- Award ID(s):
- 1718991
- NSF-PAR ID:
- 10189615
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 20
- Issue:
- 174
- ISSN:
- 1532-4435
- Page Range / eLocation ID:
- 1-42
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Sparse coding refers to modeling a signal as sparse linear combinations of the elements of a learned dictionary. Sparse coding has proven to be a successful and interpretable approach in many applications, such as signal processing, computer vision, and medical imaging. While this success has spurred much work on sparse coding with provable guarantees, work on the setting where the learned dictionary is larger (or over-realized) with respect to the ground truth is comparatively nascent. Existing theoretical results in the over-realized regime are limited to the case of noise-less data. In this paper, we show that for over-realized sparse coding in the presence of noise, minimizing the standard dictionary learning objective can fail to recover the ground-truth dictionary, regardless of the magnitude of the signal in the data-generating process. Furthermore, drawing from the growing body of work on self-supervised learning, we propose a novel masking objective and we prove that minimizing this new objective can recover the ground-truth dictionary. We corroborate our theoretical results with experiments across several parameter regimes, showing that our proposed objective enjoys better empirical performance than the standard reconstruction objective.more » « less
-
Sparse coding, which refers to modeling a signal as sparse linear combinations of the elements of a learned dictionary, has proven to be a successful (and interpretable) approach in applications such as signal processing, computer vision, and medical imaging. While this success has spurred much work on provable guarantees for dictionary recovery when the learned dictionary is the same size as the ground-truth dictionary, work on the setting where the learned dictionary is larger (or over-realized) with respect to the ground truth is comparatively nascent. Existing theoretical results in this setting have been constrained to the case of noise-less data. We show in this work that, in the presence of noise, minimizing the standard dictionary learning objective can fail to recover the elements of the ground-truth dictionary in the over-realized regime, regardless of the magnitude of the signal in the data-generating process. Furthermore, drawing from the growing body of work on self-supervised learning, we propose a novel masking objective for which recovering the ground-truth dictionary is in fact optimal as the signal increases for a large class of data-generating processes. We corroborate our theoretical results with experiments across several parameter regimes showing that our proposed objective also enjoys better empirical performance than the standard reconstruction objective.more » « less
-
Abstract We describe a stochastic, dynamical system capable of inference and learning in a probabilistic latent variable model. The most challenging problem in such models—sampling the posterior distribution over latent variables—is proposed to be solved by harnessing natural sources of stochasticity inherent in electronic and neural systems. We demonstrate this idea for a sparse coding model by deriving a continuous-time equation for inferring its latent variables via Langevin dynamics. The model parameters are learned by simultaneously evolving according to another continuous-time equation, thus bypassing the need for digital accumulators or a global clock. Moreover, we show that Langevin dynamics lead to an efficient procedure for sampling from the posterior distribution in the L0 sparse regime, where latent variables are encouraged to be set to zero as opposed to having a small L1 norm. This allows the model to properly incorporate the notion of sparsity rather than having to resort to a relaxed version of sparsity to make optimization tractable. Simulations of the proposed dynamical system on both synthetic and natural image data sets demonstrate that the model is capable of probabilistically correct inference, enabling learning of the dictionary as well as parameters of the prior.more » « less
-
Causal discovery witnessed significant progress over the past decades. In particular,many recent causal discovery methods make use of independent, non-Gaussian noise to achieve identifiability of the causal models. Existence of hidden direct common causes, or confounders, generally makes causal discovery more difficult;whenever they are present, the corresponding causal discovery algorithms canbe seen as extensions of overcomplete independent component analysis (OICA). However, existing OICA algorithms usually make strong parametric assumptions on the distribution of independent components, which may be violated on real data, leading to sub-optimal or even wrong solutions. In addition, existing OICA algorithms rely on the Expectation Maximization (EM) procedure that requires computationally expensive inference of the posterior distribution of independent components. To tackle these problems, we present a Likelihood-Free Overcomplete ICA algorithm (LFOICA1) that estimates the mixing matrix directly byback-propagation without any explicit assumptions on the density function of independent components. Thanks to its computational efficiency, the proposed method makes a number of causal discovery procedures much more practically feasible.For illustrative purposes, we demonstrate the computational efficiency and efficacy of our method in two causal discovery tasks on both synthetic and real data.more » « less
-
Abstract Data‐driven methods have been widely used in functional magnetic resonance imaging (fMRI) data analysis. They extract latent factors, generally, through the use of a simple generative model. Independent component analysis (ICA) and dictionary learning (DL) are two popular data‐driven methods that are based on two different forms of diversity—statistical properties of the data—statistical independence for ICA and sparsity for DL. Despite their popularity, the comparative advantage of emphasizing one property over another in the decomposition of fMRI data is not well understood. Such a comparison is made harder due to the differences in the modeling assumptions between ICA and DL, as well as within different ICA algorithms where each algorithm exploits a different form of diversity. In this paper, we propose the use of objective global measures, such as time course frequency power ratio, network connection summary, and graph theoretical metrics, to gain insight into the role that different types of diversity have on the analysis of fMRI data. Four ICA algorithms that account for different types of diversity and one DL algorithm are studied. We apply these algorithms to real fMRI data collected from patients with schizophrenia and healthy controls. Our results suggest that no one particular method has the best performance using all metrics, implying that the optimal method will change depending on the goal of the analysis. However, we note that in none of the scenarios we test the highly popular Infomax provides the best performance, demonstrating the cost of exploiting limited form of diversity.