- Award ID(s):
- 1718991
- Publication Date:
- NSF-PAR ID:
- 10189615
- Journal Name:
- Journal of machine learning research
- Volume:
- 20
- Issue:
- 174
- Page Range or eLocation-ID:
- 1-42
- ISSN:
- 1532-4435
- Sponsoring Org:
- National Science Foundation
More Like this
-
Sparse Coding Enables the Reconstruction of High-Fidelity Images and Video from Retinal Spike TrainsThe optic nerve transmits visual information to the brain as trains of discrete events, a low-power, low-bandwidth communication channel also exploited by silicon retina cameras. Extracting highfidelity visual input from retinal event trains is thus a key challenge for both computational neuroscience and neuromorphic engineering. Here, we investigate whether sparse coding can enable the reconstruction of high-fidelity images and video from retinal event trains. Our approach is analogous to compressive sensing, in which only a random subset of pixels are transmitted and the missing information is estimated via inference. We employed a variant of the Locally Competitive Algorithm to infer sparse representations from retinal event trains, using a dictionary of convolutional features optimized via stochastic gradient descent and trained in an unsupervised manner using a local Hebbian learning rule with momentum. We used an anatomically realistic retinal model with stochastic graded release from cones and bipolar cells to encode thumbnail images as spike trains arising from ON and OFF retinal ganglion cells. The spikes from each model ganglion cell were summed over a 32 msec time window, yielding a noisy rate-coded image. Analogous to how the primary visual cortex is postulated to infer features from noisy spike trains arising frommore »
-
Abstract We describe a stochastic, dynamical system capable of inference and learning in a probabilistic latent variable model. The most challenging problem in such models—sampling the posterior distribution over latent variables—is proposed to be solved by harnessing natural sources of stochasticity inherent in electronic and neural systems. We demonstrate this idea for a sparse coding model by deriving a continuous-time equation for inferring its latent variables via Langevin dynamics. The model parameters are learned by simultaneously evolving according to another continuous-time equation, thus bypassing the need for digital accumulators or a global clock. Moreover, we show that Langevin dynamics lead to an efficient procedure for sampling from the posterior distribution in the L0 sparse regime, where latent variables are encouraged to be set to zero as opposed to having a small L1 norm. This allows the model to properly incorporate the notion of sparsity rather than having to resort to a relaxed version of sparsity to make optimization tractable. Simulations of the proposed dynamical system on both synthetic and natural image data sets demonstrate that the model is capable of probabilistically correct inference, enabling learning of the dictionary as well as parameters of the prior.
-
Causal discovery witnessed significant progress over the past decades. In particular,many recent causal discovery methods make use of independent, non-Gaussian noise to achieve identifiability of the causal models. Existence of hidden direct common causes, or confounders, generally makes causal discovery more difficult;whenever they are present, the corresponding causal discovery algorithms canbe seen as extensions of overcomplete independent component analysis (OICA). However, existing OICA algorithms usually make strong parametric assumptions on the distribution of independent components, which may be violated on real data, leading to sub-optimal or even wrong solutions. In addition, existing OICA algorithms rely on the Expectation Maximization (EM) procedure that requires computationally expensive inference of the posterior distribution of independent components. To tackle these problems, we present a Likelihood-Free Overcomplete ICA algorithm (LFOICA1) that estimates the mixing matrix directly byback-propagation without any explicit assumptions on the density function of independent components. Thanks to its computational efficiency, the proposed method makes a number of causal discovery procedures much more practically feasible.For illustrative purposes, we demonstrate the computational efficiency and efficacy of our method in two causal discovery tasks on both synthetic and real data.
-
Abstract Measured intensity in high-energy monochromatic X-ray diffraction (HEXD) experiments provides information regarding the microstructure of the crystalline material under study. The location of intensity on an areal detector is determined by the lattice spacing and orientation of crystals so that changes in the
heterogeneity of these quantities are reflected in the spreading of diffraction peaks over time. High temporal resolution of such dynamics can now be experimentally observed using technologies such as the mixed-mode pixel array detector (MM-PAD) which facilitates in situ dynamic HEXD experiments to study plasticity and its underlying mechanisms. In this paper, we define and demonstrate a feature computed directly from such diffraction time series data quantifying signal spread in a manner that is correlated with plastic deformation of the sample. A distinguishing characteristic of the analysis is the capability to describe the evolution from the distinct diffraction peaks of an undeformed alloy sample through to the non-uniform Debye–Scherrer rings developed upon significant plastic deformation. We build on our previous work modeling data using an overcomplete dictionary by treating temporal measurements jointly to improve signal spread recovery. We demonstrate our approach in simulations and on experimental HEXD measurements captured using the MM-PAD. Our method for characterizing the temporalmore » -
Refinement types enable lightweight verification of functional programs. Algorithms for statically inferring refinement types typically work by reduction to solving systems of constrained Horn clauses extracted from typing derivations. An example is Liquid type inference, which solves the extracted constraints using predicate abstraction. However, the reduction to constraint solving in itself already signifies an abstraction of the program semantics that affects the precision of the overall static analysis. To better understand this issue, we study the type inference problem in its entirety through the lens of abstract interpretation. We propose a new refinement type system that is parametric with the choice of the abstract domain of type refinements as well as the degree to which it tracks context-sensitive control flow information. We then derive an accompanying parametric inference algorithm as an abstract interpretation of a novel data flow semantics of functional programs. We further show that the type system is sound and complete with respect to the constructed abstract semantics. Our theoretical development reveals the key abstraction steps inherent in refinement type inference algorithms. The trade-off between precision and efficiency of these abstraction steps is controlled by the parameters of the type system. Existing refinement type systems and their respectivemore »