skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the complexity of solid-state diffusion in highly concentrated alloys and the sluggish diffusion core-effect
Award ID(s):
1729350
PAR ID:
10189748
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Calphad
Volume:
68
Issue:
C
ISSN:
0364-5916
Page Range / eLocation ID:
101713
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Model analogies and exchange of ideas between physics or chemistry with biology or epidemiology have often involved intersectoral mapping of techniques. Material mechanics has benefited hugely from such interpolations from mathematical physics where dislocation patterning of plastically deformed metals and mass transport in nanocomposite materials with high diffusivity paths such as dislocation and grain boundaries, have been traditionally analyzed using the paradigmatic Walgraef-Aifantis (W-A) double-diffusivity (D-D) model. A long standing challenge in these studies has been the inherent nonlinear correlation between the diffusivity paths, making it extremely difficult to analyze their interdependence. Here, we present a novel method of approximating a closed form solution of the ensemble averaged density profiles and correlation statistics of coupled dynamical systems, drawing from a technique used in mathematical biology to calculate a quantity called the basic reproduction number R0, which is the average number of secondary infections generated from every infected. We show that the R0 formulation can be used to calculate the correlation between diffusivity paths, agreeing closely with the exact numerical solution of the D-D model. The method can be generically implemented to analyze other reaction-diffusion models. 
    more » « less
  2. The drift-diffusion model (DDM) is a model of sequential sampling with diffusion signals, where the decision maker accumulates evidence until the process hits either an upper or lower stopping boundary and then stops and chooses the alternative that corresponds to that boundary. In perceptual tasks, the drift of the process is related to which choice is objectively correct, whereas in consumption tasks, the drift is related to the relative appeal of the alternatives. The simplest version of the DDM assumes that the stopping boundaries are constant over time. More recently, a number of papers have used nonconstant boundaries to better fit the data. This paper provides a statistical test for DDMs with general, nonconstant boundaries. As a by-product, we show that the drift and the boundary are uniquely identified. We use our condition to nonparametrically estimate the drift and the boundary and construct a test statistic based on finite samples. 
    more » « less