- Award ID(s):
- 1910392
- NSF-PAR ID:
- 10189764
- Date Published:
- Journal Name:
- Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence
- Volume:
- 124
- Page Range / eLocation ID:
- 340-349
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Integrity of elections is vital to democratic systems, but it is frequently threatened by malicious actors. The study of algorithmic complexity of the problem of manipulating election outcomes by changing its structural features is known as election control. One means of election control that has been proposed is to select a subset of issues that determine voter preferences over candidates. We study a variation of this model in which voters have judgments about relative importance of issues, and a malicious actor can manipulate these judgments. We show that computing effective manipulations in this model is NP-hard even with two candidates or binary issues. However, we demonstrate that the problem is tractable with a constant number of voters or issues. Additionally, while it remains intractable when voters can vote stochastically, we exhibit an important special case in which stochastic voting enables tractable manipulation.more » « less
-
null (Ed.)As paper ballots and post-election audits gain increased adoption in the United States, election technology vendors are offering products that allow jurisdictions to review ballot images—digital scans produced by optical-scan voting machines—in their post-election audit procedures. Jurisdictions including the state of Maryland rely on such image audits as an alternative to inspecting the physical paper ballots. We show that image audits can be reliably defeated by an attacker who can run malicious code on the voting machines or election management system. Using computer vision techniques, we develop an algorithm that automatically and seamlessly manipulates ballot images, moving voters’ marks so that they appear to be votes for the attacker’s preferred candidate. Our implementation is compatible with many widely used ballot styles, and we show that it is effective using a large corpus of ballot images from a real election. We also show that the attack can be delivered in the form of a malicious Windows scanner driver, which we test with a scanner that has been certified for use in vote tabulation by the U.S. Election Assistance Commission. These results demonstrate that post-election audits must inspect physical ballots, not merely ballot images, if they are to strongly defend against computer-based attacks on widely used voting systems.more » « less
-
Constructive election control considers the problem of an adversary who seeks to sway the outcome of an electoral process in order to ensure that their favored candidate wins. We consider the computational problem of constructive election control via issue selection. In this problem, a party decides which political issues to focus on to ensure victory for the favored candidate. We also consider a variation in which the goal is to maximize the number of voters supporting the favored candidate. We present strong negative results, showing, for example, that the latter problem is inapproximable for any constant factor. On the positive side, we show that when issues are binary, the problem becomes tractable in several cases, and admits a 2-approximation in the two-candidate case. Finally, we develop integer programming and heuristic methods for these problems.more » « less
-
Election control considers the problem of an adversary who attempts to tamper with a voting process, in order to either ensure that their favored candidate wins (constructive control) or another candidate loses (destructive control). As online social networks have become significant sources of information for potential voters, a new tool in an attacker’s arsenal is to effect control by harnessing social influence, for example, by spreading fake news and other forms of misinformation through online social media. We consider the computational problem of election control via social influence, studying the conditions under which finding good adversarial strategies is computationally feasible. We consider two objectives for the adversary in both the constructive and destructive control settings: probability and margin of victory (POV and MOV, respectively). We present several strong negative results, showing, for example, that the problem of maximizing POV is inapproximable for any constant factor. On the other hand, we present approxima- tion algorithms which provide somewhat weaker approximation guarantees, such as bicriteria approximations for the POV objective and constant-factor approximations for MOV. Finally, we present mixed integer programming formulations for these problems. Ex- perimental results show that our approximation algorithms often find near-optimal control strategies, indicating that election control through social influence is a salient threat to election integrity.more » « less
-
Abstract We introduce Flexible Representative Democracy (FRD), a novel hybrid of Representative Democracy and Direct Democracy in which voters can alter the issue-dependent weights of a set of elected representatives. In line with the literature on Interactive Democracy, our model allows the voters to actively determine the degree to which the system is direct versus representative. However, unlike Liquid Democracy, Flexible Representative Democracy uses strictly non-transitive delegations, making delegation cycles impossible, and maintains a fixed set of accountable, elected representatives. We present Flexible Representative Democracy and analyze it using a computational approach with issues that are binary and symmetric. We compare the outcomes of various voting systems using Direct Democracy with majority voting as an ideal baseline. First, we demonstrate the shortcomings of Representative Democracy in our model. We provide NP-Hardness results for electing an ideal set of representatives, discuss pathologies, and demonstrate empirically that common multi-winner election rules for selecting representatives do not perform well in expectation. To analyze the effects of adding delegation to representative voting systems, we begin by providing theoretical results on how issue-specific delegations determine outcomes. Finally, we provide empirical results comparing the outcomes of various voting systems: Representative Democracy, Proxy Voting, and FRD with issue-specific delegations. Our results show that variants of Proxy Voting yield no discernible benefit over unweighted representatives and reveal the potential for Flexible Representative Democracy to improve outcomes as voter participation increases.