skip to main content


Title: Vapor phase infiltration of zinc oxide into thin films of cis -polyisoprene rubber
Elastomers are an important class of polymers for many applications. Often, additives are added to the polymer matrix of elastomers to promote vulcanization or enhance physical or chemical properties. In this study, vapor phase infiltration (VPI) is investigated for transforming unvulcanized cis -polyisoprene (from natural rubber) into an organic/inorganic hybrid material. Specifically, we examine single-cycle infiltration with diethylzinc (DEZ) and water to form infiltrated zinc oxide species. Interestingly, low-temperature pre-heating of the cis -polyisoprene acutely affects the processes of infiltration, including diffusivity, maximum solubility, and chemical reactivity. We attribute these effects to a combination of film relaxation and oxidation. Independent of thermal pre-treatments, all infiltration processes exhibited consistent zinc oxide loading irrespective of purge time between the DEZ and water doses, indicating the presence of a strongly bound intermediate state between the DEZ precursor and the cis -polyisoprene polymer. Increasing infiltration process temperature accelerates diffusion and lowers the maximum solubility, in accordance with Fick's law and gas phase sorption equilibrium. Resulting organic–inorganic hybrid films show enhanced resistance to dissolution in toluene, a good solvent for the pure polymer.  more » « less
Award ID(s):
1921873
NSF-PAR ID:
10189874
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Materials Advances
ISSN:
2633-5409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Selective deposition of hybrid and inorganic materials inside nanostructures could enable major nanotechnological advances. However, inserting ready-made composites inside nanocavities may be difficult, and therefore, stepwise approaches are needed. In this paper, a poly(ethyl acrylate) template is grown selectively inside cavities via condensation-controlled toposelective vapor deposition, and the polymer is then hybridized by alumina, titania, or zinc oxide. The hybridization is carried out by infiltrating the polymer with a vapor-phase metalorganic precursor and water vapor either via a short-pulse (atomic layer deposition, ALD) or a long-pulse (vapor phase infiltration, VPI) sequence. When the polymer-MO x hybrid material is calcined at 450 °C in air, an inorganic phase is left as the residue. Various suspected confinement effects are discussed. The infiltration of inorganic materials is reduced in deeper layers of the cavity-grown polymer and is dependent on the cavity geometry. The structure of the inorganic deposition after calcination varies from scattered particles and their aggregates to cavity-capping films or cavity-filling low-density porous deposition, and the inorganic deposition is often anisotropically cracked. A large part of the infiltration is achieved already during the short-pulse experiments with a commercial ALD reactor. Furthermore, the infiltrated polymer is more resistant to dissolution in acetone whereas the inorganic component can still be heavily affected by phosphoric acid. 
    more » « less
  2. Vapor phase infiltration (VPI) is a post-polymerization modification technique that infuses inorganics into polymers to create organic–inorganic hybrid materials with new properties. Much is yet to be understood about the chemical kinetics underlying the VPI process. The aim of this study is to create a greater understanding of the process kinetics that govern the infiltration of trimethyl aluminum (TMA) and TiCl 4 into PMMA to form inorganic-PMMA hybrid materials. To gain insight, this paper initially examines the predicted results for the spatiotemporal concentrations of inorganics computed from a recently posited reaction–diffusion model for VPI. This model provides insight on how the Damköhler number (reaction versus diffusion rates) and non-Fickian diffusional processes (hindering) that result from the material transforming from a polymer to a hybrid can affect the evolution of inorganic concentration depth profiles with time. Subsequently, experimental XPS depth profiles are collected for TMA and TiCl 4 infiltrated PMMA films at 90 °C and 135 °C. The functional behavior of these depth profiles at varying infiltration times are qualitatively compared to various computed predictions and conclusions are drawn about the mechanisms of each of these processes. TMA infiltration into PMMA appears to transition from a diffusion-limited process at low temperatures (90 °C) to a reaction-limited process at high temperatures (135 °C) for the film thicknesses investigated here (200 nm). While TMA appears to fully infiltrate these 200 nm PMMA films within a few hours, TiCl 4 infiltration into PMMA is considerably slower, with full saturation not occurring even after 2 days of precursor exposure. Infiltration at 90 °C is so slow that no clear conclusions about mechanism can be drawn; however, at 135 °C, the TiCl 4 infiltration into PMMA is clearly a reaction-limited process, with TiCl 4 permeating the entire thickness (at low concentrations) within only a few minutes, but inorganic loading continuously increasing in a uniform manner over a course of 2 days. Near-surface deviations from the uniform-loading expected for a reaction-limited process also suggest that diffusional hindering is high for TiCl 4 infiltration into PMMA. These results demonstrate a new, ex situ analysis approach for investigating the rate-limiting process mechanisms for vapor phase infiltration. 
    more » « less
  3. The conformal nanoporous inorganic coatings with accessible pores that are stable under applied thermal and mechanical stresses represent an important class of materials used in the design of sensors, optical coatings, and biomedical systems. Here, we synthesize porous AlOx and ZnO coatings by the sequential infiltration synthesis (SIS) of two types of polymers that enable the design of porous conformal coatings—polymers of intrinsic microporosity (PIM) and block co-polymer (BCP) templates. Using quartz crystal microbalance (QCM), we show that alumina precursors infiltrate both polymer templates four times more efficiently than zinc oxide precursors. Using the quartz crystal microbalance (QCM) technique, we provide a comprehensive study on the room temperature accessibility to water and ethanol of pores in block copolymers (BCPs) and porous polymer templates using polystyrene-block-poly-4-vinyl pyridine (PS75-b-P4VP25) and polymers of intrinsic microporosity (PIM-1), polymer templates modified by swelling, and porous inorganic coatings such as AlOx and ZnO synthesized by SIS using such templates. Importantly, we demonstrate that no structural damage occurs in inorganic nanoporous AlOx and ZnO coatings synthesized via infiltration of the polymer templates during the water freezing/melting cycling tests, suggesting excellent mechanical stability of the coatings, even though the hardness of the inorganic nanoporous coating is affected by the polymer and precursor selections. We show that the hardness of the coatings is further improved by their annealing at 900 °C for 1 h, though for all the cases except ZnO obtained using the BCP template, this annealing has a negligible effect on the porosity of the material, as is confirmed by the consistency in the optical characteristics. These findings unravel new potential for the materials being used across various environment and temperature conditions.

     
    more » « less
  4. Polymer templates play an essential role in the robust infiltration-based synthesis of functional multicomponent heterostructures with controlled structure, porosity, and composition. Such heterostructures are be used as hybrid organic–inorganic composites or as all-inorganic systems once the polymer templates are removed. Using iron oxide/alumina heterostructures formed by two-step infiltration of polystyrene-block-polyvinyl pyridine block copolymer with iron and aluminum precursors from the solution and vapor-phases, respectively, we show that the phase and morphology of iron oxide nanoparticles dramatically depend on the approach used to remove the polymer. We demonstrate that thermal and plasma oxidative treatments result in iron oxide nanoparticles with either solid or hollow morphologies, respectively, that lead to different magnetic properties of the resulting materials. Our study extends the boundaries of structure manipulations in multicomponent heterostructures synthesized using polymer infiltration synthesis, and hence their properties. 
    more » « less
  5. Electrolyte-gated transistors (EGTs) hold great promise for next-generation printed logic circuitry, biocompatible integrated sensors, and neuromorphic devices. However, EGT-based complementary circuits with high voltage gain and ultralow driving voltage (<0.5 V) are currently unrealized, because achieving balanced electrical output for both the p- and n-type EGT components has not been possible with current materials. Here we report high-performance EGT complementary circuits containing p-type organic electrochemical transistors (OECTs) fabricated with an ion-permeable organic semiconducting polymer (DPP-g2T) and an n-type electrical double-layer transistor (EDLT) fabricated with an ion-impermeable inorganic indium–gallium–zinc oxide (IGZO) semiconductor. Adjusting the IGZO composition enables tunable EDLT output which, for In:Ga:Zn = 10:1:1 at%, balances that of the DPP-g2T OECT. The resulting hybrid electrolyte-gated inverter (HCIN) achieves ultrahigh voltage gains (>110) under a supply voltage of only 0.7 V. Furthermore, NAND and NOR logic circuits on both rigid and flexible substrates are realized, enabling not only excellent logic response with driving voltages as low as 0.2 V but also impressive mechanical flexibility down to 1-mm bending radii. Finally, the HCIN was applied in electrooculographic (EOG) signal monitoring for recording eye movement, which is critical for the development of wearable medical sensors and also interfaces for human–computer interaction; the high voltage amplification of the present HCIN enables EOG signal amplification and monitoring in which a small ∼1.5 mV signal is amplified to ∼30 mV.

     
    more » « less