skip to main content


Title: An Optical Wireless Temperature Sensor
This paper presents a wireless temperature sensor that uses a GaAs solar cell as a wireless transmitter of information. Transmission of information with a solar cell is possible by modulating the luminescent radiation emitted by the solar cell. This technique, dubbed Optical Frequency Identification or OFID, was recently reported in the literature and in this work is used to transmit temperature measurements wirelessly. The hardware design of an OFID temperature sensor tag and its corresponding reader is described. A prototype of the proposed sensor was built as a proof of concept. Experimental results demonstrate wireless data transmission at a distance of 1 m distance and at a bit rate of 1200 bps. The wireless temperature sensor has a maximum error of 0.39°C (after calibration) with respect to a high-precision temperature meter.  more » « less
Award ID(s):
1809637
NSF-PAR ID:
10189899
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE Sensors Conference
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With recent technological advances in sensor nodes, IoT enabled applications have great potential in many domains. However, sensing data may be inaccurate due to not only faults or failures in the sensor and network but also the limited resources and transmission capability available in sensor nodes. In this paper, we first model streams of IoT data as a handful of sampled data in the transformed domain while assuming the information attained by those sampled data reveal different sparsity profiles between normal and abnormal. We then present a novel approach called AD2 (Anomaly Detection using Approximated Data) that applies a transformation on the original data, samples top k-dominant components, and detects data anomalies based on the disparity in k values. To demonstrate the effectiveness of AD2 , we use IoT datasets (temperature, humidity, and CO) collected from real-world wireless sensor nodes. Our experimental evaluation demonstrates that AD2 can approximate and successfully detect 64%-94% of anomalies using only 1.9% of the original data and minimize false positive rates, which would otherwise require the entire dataset to achieve the same level of accuracy. 
    more » « less
  2. The past few years have witnessed a growing interest in wireless and batteryless implants, due to their potential in long-term biomedical monitoring of in-body conditions such as internal organ movements, bladder pressure, and gastrointestinal health. Early proposals for batteryless implants relied on inductive near-field coupling and ultrasound harvesting, which require direct contact between the external power source and the human body. To overcome this near-field challenge, recent research has investigated the use of RF backscatter in wireless micro-implants because of its ability to communicate with wireless receivers that are placed at a distance outside the body (∼0.5 m), allowing a more seamless user experience. Unfortunately, existing far-field backscatter designs remain limited in their functionality: they cannot perform biometric sensing or secure data transmission; they also suffer from degraded harvesting efficiency and backscatter range due to the impact of variations in the surrounding tissues. In this paper, we present the design of a batteryless, wireless and secure system-on-chip (SoC) implant for in-body strain sensing. The SoC relies on four features: 1) employing a reconfigurable in-body rectenna which can operate across tissues adapting its backscatter bandwidth and center frequency; 2) designing an energy efficient 1.37 mmHg strain sensing front-end with an efficiency of 5.9 mmHg·nJ/conversion; 3) incorporating an AES-GCM security engine to ensure the authenticity and confidentiality of sensed data while sharing the ADC with the sensor interface for an area efficient random number generation; 4) implementing an over-the-air closed-loop wireless programming scheme to reprogram the RF front-end to adapt for surrounding tissues and the sensor front-end to achieve faster settling times below 2 s. 
    more » « less
  3. Precise form-fitting of prosthetic sockets is important for the comfort and well-being of persons with limb amputations. Capabilities for continuous monitoring of pressure and temperature at the skin-prosthesis interface can be valuable in the fitting process and in monitoring for the development of dangerous regions of increased pressure and temperature as limb volume changes during daily activities. Conventional pressure transducers and temperature sensors cannot provide comfortable, irritation-free measurements because of their relatively rigid construction and requirements for wired interfaces to external data acquisition hardware. Here, we introduce a millimeter-scale pressure sensor that adopts a soft, three-dimensional design that integrates into a thin, flexible battery-free, wireless platform with a built-in temperature sensor to allow operation in a noninvasive, imperceptible fashion directly at the skin-prosthesis interface. The sensor system mounts on the surface of the skin of the residual limb, in single or multiple locations of interest. A wireless reader module attached to the outside of the prosthetic socket wirelessly provides power to the sensor and wirelessly receives data from it, for continuous long-range transmission to a standard consumer electronic device such as a smartphone or tablet computer. Characterization of both the sensor and the system, together with theoretical analysis of the key responses, illustrates linear, accurate responses and the ability to address the entire range of relevant pressures and to capture skin temperature accurately, both in a continuous mode. Clinical application in two prosthesis users demonstrates the functionality and feasibility of this soft, wireless system.

     
    more » « less
  4. The integration of wireless power technology in large sensor networks is highly sought for in many applications, including agriculture. This is due to the accessibility and lack of wiring complexity such technologies have to offer. In an agricultural setting, the working environment can be harsh on sensing equipment due to factors that include weather, constant deconstruction and re-installation with the changing plant cycles, and vehicle traffic. Since many agriculture plots reside in difficult to access locations, the use of self-sufficient energy capturing methods have become popular. These contemporary methods generally rely on the collection of solar, wind, or ambient radio waves to charge battery banks connected to the sensing device. These methods have major limitations as sunlight can be shadowed as crops mature, wind creates obstacles for equipment to navigate, and radio frequencies do not penetrate well through soil or plants. This ultimately reduces the quantity of sensors that can be instrumented throughout a field. To address such limitations, a new wireless power transfer method will be presented that utilizes a buried transmitter to generate conduction currents through the soil to power distant sensing devices scattered throughout a field. Impedance spectra of the soil is used to determine the optimal depth of the transmitter. The power capabilities of the system are demonstrated by operating, without a battery, a moisture sensor connected to a microcontroller at a 10 m distance from the transmitter. 
    more » « less
  5. The wavelength dependence of atmospheric absorption creates range cues in hyperspectral measurements that can be exploited for passive ranging using only thermal emissions. In this work, we present fundamental limits on absorption-based ranging under a model of known air temperature and wavelength-dependent attenuation coefficient, with object temperature and emissivity unknown; reflected solar and environmental radiance is omitted from our analysis. Fisher information computations illustrate how performance limits depend on atmospheric conditions such as air temperature and humidity; temperature contrast in the scene; spectral resolution of measurement; and distance. These results should prove valuable in sensor system design.

     
    more » « less