Abstract Decades ago, Aharonov and Bohm showed that electrons are affected by electromagnetic potentials in the absence of forces due to fields. Zeilinger’s theorem describes this absence of classical force in quantum terms as the “dispersionless” nature of the Aharonov-Bohm effect. Shelankov predicted the presence of a quantum “force” for the same Aharonov-Bohm physical system as elucidated by Berry. Here, we report an experiment designed to test Shelankov’s prediction and we provide a theoretical analysis that is intended to elucidate the relation between Shelankov’s prediction and Zeilinger’s theorem. The experiment consists of the Aharonov-Bohm physical system; free electrons pass a magnetized nanorod and far-field electron diffraction is observed. The diffraction pattern is asymmetric confirming one of Shelankov’s predictions and giving indirect experimental evidence for the presence of a quantum “force”. Our theoretical analysis shows that Zeilinger’s theorem and Shelankov’s result are both special cases of one theorem.
more »
« less
Synthesis and observation of non-Abelian gauge fields in real space
Particles placed inside an Abelian (commutative) gauge field can acquire different phases when traveling along the same path in opposite directions, as is evident from the Aharonov-Bohm effect. Such behaviors can get significantly enriched for a non-Abelian gauge field, where even the ordering of different paths cannot be switched. So far, real-space realizations of gauge fields have been limited to Abelian ones. We report an experimental synthesis of non-Abelian gauge fields in real space and the observation of the non-Abelian Aharonov-Bohm effect with classical waves and classical fluxes. On the basis of optical mode degeneracy, we break time-reversal symmetry in different manners, via temporal modulation and the Faraday effect, to synthesize tunable non-Abelian gauge fields. The Sagnac interference of two final states, obtained by reversely ordered path integrals, demonstrates the noncommutativity of the gauge fields. Our work introduces real-space building blocks for non-Abelian gauge fields, relevant for classical and quantum exotic topological phenomena.
more »
« less
- Award ID(s):
- 1838412
- PAR ID:
- 10190067
- Date Published:
- Journal Name:
- Science
- Volume:
- 365
- Issue:
- 6457
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 1021 to 1025
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Flat bands in condensed matter systems can host emergent states of matter, from insulating states in twisted bilayer graphene to fractionalized excitations in frustrated magnets and quantum Hall materials. A key phenomenon in certain flat-band systems is Aharonov–Bohm caging, where particles become localized due to destructive interference caused by gauge fields. Here we report on the experimental realization of highly tunable flat-band models populated by strongly interacting Rydberg atoms. By employing synthetic dimensions, we engineer a flat-band rhombic lattice with twisted boundaries and explore the control of Aharonov–Bohm caging during non-equilibrium dynamics through a tunable gauge field. Microscopic measurements of Rydberg pairs reveal the interaction-driven breakdown of Aharonov–Bohm caging in the limit of strong dipolar interactions, where lattice bands mix. In the limit of weak interactions, where caging persists, we observe effective magnetism arising from the interaction-driven mixing of degenerate flat-band states. These observations offer insights into emergent phenomena in synthetic quantum materials and expand our understanding of quantum many-body physics in engineered lattice systems.more » « less
-
Abstract Emergence of fundamental forces from gauge symmetry is among our most profound insights about the physical universe. In nature, such symmetries remain hidden in the space of internal degrees of freedom of subatomic particles. Here we propose a way to realize and study gauge structures in real space, manifest in external degrees of freedom of quantum states. We present a model based on a ring-shaped lattice potential, which allows for both Abelian and non-Abelian constructs. Non trivial Wilson loops are shown possible via physical motion of the system. The underlying physics is based on the close analogy of geometric phase with gauge potentials that has been utilized to create synthetic gauge fields with internal states of ultracold atoms. By scaling up to an array with spatially varying parameters, a discrete gauge field can be realized in position space, and its dynamics mapped over macroscopic size and time scales.more » « less
-
Geometric phases appear ubiquitously in many and diverse areas of the physical sciences, ranging from classical and molecular dynamics to quantum mechanics and solid-state physics. In the realm of optics, similar phenomena are known to emerge in the form of a Pancharatnam-Berry phase whenever the polarization state traces a closed contour on the Poincaré sphere. While this class of geometric phases has been extensively investigated in both free-space and guided wave systems, the observation of similar effects in photon tunneling arrangements has so far remained largely unexplored. Here, we experimentally demonstrate that the tunneling or coupling process in a twisted multicore fiber system can display a chiral geometric phase accumulation, analogous to the Aharonov-Bohm effect. In our experiments, the tunneling geometric phase is manifested through the interference of the corresponding supermodes. Our work provides the first observation of Aharonov-Bohm suppression of tunneling in an optical setting.more » « less
-
The geometrical Berry phase is key to understanding the behavior of quantum states under cyclic adiabatic evolution. When generalized to non-Hermitian systems with gain and loss, the Berry phase can become complex and should modify not only the phase but also the amplitude of the state. Here, we perform the first experimental measurements of the adiabatic non-Hermitian Berry phase, exploring a minimal two-site PT-symmetric Hamiltonian that is inspired by the Hatano-Nelson model. We realize this non-Hermitian model experimentally by mapping its dynamics to that of a pair of classical oscillators coupled by real-time measurement-based feedback. As we verify experimentally, the adiabatic non-Hermitian Berry phase is a purely geometrical effect that leads to significant amplification and damping of the amplitude also for noncyclical paths within the parameter space even when all eigenenergies are real. We further observe a non-Hermitian analog of the Aharonov-Bohm solenoid effect, observing amplification and attenuation when encircling a region of broken PT symmetry that serves as a source of imaginary flux. This experiment demonstrates the importance of geometrical effects that are unique to non-Hermitian systems and paves the way towards further studies of non-Hermitian and topological physics in synthetic metamaterials.more » « less
An official website of the United States government

