skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symbolic Execution for Importance Analysis and Adversarial Generation in Neural Networks
Deep Neural Networks (DNN) are increasingly used in a variety of applications, many of them with serious safety and security concerns. This paper describes DeepCheck, a new approach for validating DNNs based on core ideas from program analysis, specifically from symbolic execution. DeepCheck implements novel techniques for lightweight symbolic analysis of DNNs and applies them to address two challenging problems in DNN analysis: 1) identification of important input features and 2) leveraging those features to create adversarial inputs. Experimental results with an MNIST image classification network and a sentiment network for textual data show that DeepCheck promises to be a valuable tool for DNN analysis.  more » « less
Award ID(s):
1704790 1718903
PAR ID:
10190173
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)
Page Range / eLocation ID:
313 to 322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the unprecedented performance achieved by deep learning, it is commonly believed that deep neural networks (DNNs) attempt to extract informative features for learning tasks. To formalize this intuition, we apply the local information geometric analysis and establish an information-theoretic framework for feature selection, which demonstrates the information-theoretic optimality of DNN features. Moreover, we conduct a quantitative analysis to characterize the impact of network structure on the feature extraction process of DNNs. Our investigation naturally leads to a performance metric for evaluating the effectiveness of extracted features, called the H-score, which illustrates the connection between the practical training process of DNNs and the information-theoretic framework. Finally, we validate our theoretical results by experimental designs on synthesized data and the ImageNet dataset. 
    more » « less
  2. Significant interest in applying Deep Neural Network (DNN) has fueled the need to support engineering of software that uses DNNs. Repairing software that uses DNNs is one such unmistakable SE need where automated tools could be very helpful; however, we do not fully understand challenges to repairing and patterns that are utilized when manually repairing them. What challenges should automated repair tools address? What are the repair patterns whose automation could help developers? Which repair patterns should be assigned a higher priority for automation? This work presents a comprehensive study of bug fix patterns to address these questions. We have studied 415 repairs from Stack Overflow and 555 repairs from GitHub for five popular deep learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to understand challenges in repairs and bug repair patterns. Our key findings reveal that DNN bug fix patterns are distinctive compared to traditional bug fix patterns; the most common bug fix patterns are fixing data dimension and neural network connectivity; DNN bug fixes have the potential to introduce adversarial vulnerabilities; DNN bug fixes frequently introduce new bugs; and DNN bug localization, reuse of trained model, and coping with frequent releases are major challenges faced by developers when fixing bugs. We also contribute a benchmark of 667 DNN (bug, repair) instances. 
    more » « less
  3. AI-powered applications often involve multiple deep neural network (DNN)-based prediction tasks to support application level functionalities. However, executing multi-DNNs can be challenging due to the high resource demands and computation costs that increase linearly with the number of DNNs. Multi-task learning (MTL) addresses this problem by designing a multi-task model that shares parameters across tasks based on a single backbone DNN. This paper explores an alternative approach called model fusion: rather than training a single multi-task model from scratch as MTL does, model fusion fuses multiple task-specific DNNs that are pre-trained separately and can have heterogeneous architectures into a single multi-task model. We materialize model fusion in a software framework called GMorph to accelerate multi- DNN inference while maintaining task accuracy. GMorph features three main technical contributions: graph mutations to fuse multi-DNNs into resource-efficient multi-task models, search-space sampling algorithms, and predictive filtering to reduce the high search costs. Our experiments show that GMorph can outperform MTL baselines and reduce the inference latency of multi-DNNs by 1.1-3X while meeting the target task accuracy. 
    more » « less
  4. AI-powered applications often involve multiple deep neural network (DNN)-based prediction tasks to support application level functionalities. However, executing multi-DNNs can be challenging due to the high resource demands and computation costs that increase linearly with the number of DNNs. Multi-task learning (MTL) addresses this problem by designing a multi-task model that shares parameters across tasks based on a single backbone DNN. This paper explores an alternative approach called model fusion: rather than training a single multi-task model from scratch as MTL does, model fusion fuses multiple task-specific DNNs that are pre-trained separately and can have heterogeneous architectures into a single multi-task model. We materialize model fusion in a software framework called GMorph to accelerate multi- DNN inference while maintaining task accuracy. GMorph features three main technical contributions: graph mutations to fuse multi-DNNs into resource-efficient multi-task models, search-space sampling algorithms, and predictive filtering to reduce the high search costs. Our experiments show that GMorph can outperform MTL baselines and reduce the inference latency of multi-DNNs by 1.1-3X while meeting the target task accuracy. 
    more » « less
  5. Deep neural networks (DNNs) have been shown to perform well on exclusive, multi-class classification tasks. However, when different classes have similar visual features, it becomes challenging for human annotators to differentiate them. This scenario necessitates the use of composite class labels. In this paper, we propose a novel framework called Hyper-Evidential Neural Network (HENN) that explicitly models predictive uncertainty due to composite class labels in training data in the context of the belief theory called Subjective Logic (SL). By placing a grouped Dirichlet distribution on the class probabilities, we treat predictions of a neural network as parameters of hyper-subjective opinions and learn the network that collects both single and composite evidence leading to these hyper-opinions by a deterministic DNN from data. We introduce a new uncertainty type called vagueness originally designed for hyper-opinions in SL to quantify composite classification uncertainty for DNNs. Our results demonstrate that HENN outperforms its state-of-the-art counterparts based on four image datasets. The code and datasets are available at: https://github.com/ Hugo101/HyperEvidentialNN. 
    more » « less