Background: Some developer activity traditionally performed manually, such as making code commits, opening, managing, or closing issues is increasingly subject to automation in many OSS projects. Specifically, such activity is often performed by tools that react to events or run at specific times. We refer to such automation tools as bots and, in many software mining scenarios related to developer productivity or code quality it is desirable to identify bots in order to separate their actions from actions of individuals. Aim: Find an automated way of identifying bots and code committed by these bots, and to characterize the types of bots based on their activity patterns. Method and Result: We propose BIMAN, a systematic approach to detect bots using author names, commit messages, files modified by the commit, and projects associated with the ommits. For our test data, the value for AUC-ROC was 0.9. We also characterized these bots based on the time patterns of their code commits and the types of files modified, and found that they primarily work with documentation files and web pages, and these files are most prevalent in HTML and JavaScript ecosystems. We have compiled a shareable dataset containing detailed information about 461 bots we found (all of whom have more than 1000 commits) and 13,762,430 commits they created.
more »
« less
An Exploratory Study of Bot Commits
Background: Bots help automate many of the tasks performed by software developers and are widely used to commit code in various social coding platforms. At present, it is not clear what types of activities these bots perform and understanding it may help design better bots, and find application areas which might benefit from bot adoption. Aim: We aim to categorize the Bot Commits by the type of change (files added, deleted, or modified), find the more commonly changed file types, and identify the groups of file types that tend to get updated together. Method: 12,326,137 commits made by 461 popular bots (that made at least 1000 commits) were examined to identify the frequency and the type of files added/ deleted/ modified by the commits, and association rule mining was used to identify the types of files modified together. Result: Majority of the bot commits modify an existing file, a few of them add new files, while deletion of a file is very rare. Commits involving more than one type of operation are even rarer. Files containing data, configuration, and documentation are most frequently updated, while HTML is the most common type in terms of the number of files added, deleted, and modified. Files of the type "Markdown", "Ignore List", "YAML", "JSON" were the types that are updated together with other types of files most frequently. Conclusion: We observe that majority of bot commits involve single file modifications, and bots primarily work with data, configuration, and documentation files. A better understanding if this is a limitation of the bots and, if overcome, would lead to different kinds of bots remains an open question.
more »
« less
- PAR ID:
- 10190366
- Date Published:
- Journal Name:
- IEEE International Working Conference on Mining Software Repositories
- ISSN:
- 2160-1860
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)With the advent of the fourth industrial revolution, industry practitioners are moving towards container-based infrastructure for managing their digital workloads. Kubernetes, a container orchestration tool, is reported to help industry practitioners in automated management of cloud infrastructure and rapid deployment of software services. Despite reported benefits, Kubernetes installations are susceptible to security defects, as it occurred for Tesla in 2018. Understanding how frequently security defects appear in Kubernetes installations can help cybersecurity researchers to investigate security-related vulnerabilities for Kubernetes and generate security best practices to avoid them. In this position paper, we first quantify how frequently security defects appear in Kubernetes manifests, i.e., configuration files that are use to install and manage Kubernetes. Next, we lay out a list of future research directions that researchers can pursue.We apply qualitative analysis on 5,193 commits collected from 38 open source repositories and observe that 0.79% of the 5,193 commits are security-related. Based on our findings, we posit that security-related defects are under-reported and advocate for rigorous research that can systematically identify undiscovered security defects that exist in Kubernetes manifests. We predict that the increasing use of Kubernetes with unresolved security defects can lead to large-scale security breaches.more » « less
-
Bots are increasingly being used for governance-related purposes in online communities, yet no instrumentation exists for measuring how users assess their beneficial or detrimental impacts. In order to support future human-centered and community-based research, we developed a new scale called GOVernance Bots in Online communiTies (GOV-BOTs) across two rounds of surveys on Reddit (N=820). We applied rigorous psychometric criteria to demonstrate the validity of GOV-BOTs, which contains two subscales: bot governance (4 items) and bot tensions (3 items). Whereas humans have historically expected communities to be composed entirely of humans, the social participation of bots as non-human agents now raises fundamental questions about psychological, philosophical, and ethical implications. Addressing psychological impacts, our data show that perceptions of effective bot governance positively contribute to users' sense of virtual community (SOVC), whereas perceived bot tensions may only impact SOVC if users are more aware of bots. Finally, we show that users tend to experience the greatest SOVC across groups of subreddits, rather than individual subreddits, suggesting that future research should carefully re-consider uses and operationalizations of the term community.more » « less
-
Abstract Software bots have been facilitating several development activities in Open Source Software (OSS) projects, including code review. However, these bots may bring unexpected impacts to group dynamics, as frequently occurs with new technology adoption. Understanding and anticipating such effects is important for planning and management. To analyze these effects, we investigate how several activity indicators change after the adoption of a code review bot. We employed a regression discontinuity design on 1,194 software projects from GitHub. We also interviewed 12 practitioners, including open-source maintainers and contributors. Our results indicate that the adoption of code review bots increases the number of monthly merged pull requests, decreases monthly non-merged pull requests, and decreases communication among developers. From the developers’ perspective, these effects are explained by the transparency and confidence the bot comments introduce, in addition to the changes in the discussion focused on pull requests. Practitioners and maintainers may leverage our results to understand, or even predict, bot effects on their projects.more » « less
-
Software developed in different platforms has different characteristics and needs. More specifically, code changes are differently performed in the mobile platform compared to non-mobile platforms (e.g., desktop and Web platforms). Prior works have investigated the differences in specific platforms. However, we still lack a deeper understanding of how code changes evolve across different software platforms. In this paper, we present a study aiming at investigating the frequency of changes and how source code changes, build changes and test changes co-evolve in mobile and non-mobile platforms. We developed linear regression models to explain which factors influence the frequency of changes in different platforms and applied the Apriori algorithm to find types of changes that frequently occur together. Our findings show that non-mobile repositories have a higher number of commits per month compared to mobile and our regression models suggest that being mobile significantly impacts on the number of commits in a negative direction when controlling for confound factors, such as code size. We also found that developers do not usually change source code files together with build files or test files. We argue that our results can provide valuable information for developers on how changes are performed in different platforms so that practices adopted in successful software systems can be followed.more » « less
An official website of the United States government

