Published research highlights the presence of demographic bias in automated facial attribute classification.
The proposed bias mitigation techniques are mostly based on supervised learning, which requires a large amount of
labeled training data for generalizability and scalability. However, labeled data is limited, requires laborious annotation,
poses privacy risks, and can perpetuate human bias. In contrast, self-supervised learning (SSL) capitalizes
on freely available unlabeled data, rendering trained models more scalable and generalizable. However, these
label-free SSL models may also introduce biases by sampling false negative pairs, especially at low-data regimes
(< 200K images) under low compute settings. Further, SSL-based models may suffer from performance degradation
due to a lack of quality assurance of the unlabeled data sourced from the web. This paper proposes a fully self-supervised
pipeline for demographically fair facial attribute classifiers. Leveraging completely unlabeled data pseudolabeled
via pre-trained encoders, diverse data curation techniques, and meta-learning-based weighted contrastive learning, our method significantly outperforms existing SSL approaches proposed for downstream image classification tasks. Extensive evaluations on the FairFace and CelebA datasets demonstrate the efficacy of our pipeline in obtaining fair performance over existing baselines. Thus, setting a new benchmark for SSL in the fairness of facial attribute classification.
more »
« less
A Manifold Laplacian Regularized Semi-supervised Sparse Image Classification Method with a Variant Trace Lasso Norm
Since the cost of labeling data is getting higher and higher, we hope to make full use of the large amount of unlabeled data and improve image classification effect through adding some unlabeled samples for training. In addition, we expect to uniformly realize two tasks, namely the clustering of the unlabeled data and the recognition of the query image. We achieve the goal by designing a novel sparse model based on manifold assumption, which has been proved to work well in many tasks. Based on the assumption that images of the same class lie on a sub-manifold and an image can be approximately represented as the linear combination of its neighboring data due to the local linear property of manifold, we proposed a sparse representation model on manifold. Specifically, there are two regularizations, i.e., a variant Trace lasso norm and the manifold Laplacian regularization. The first regularization term enables the representation coefficients satisfying sparsity between groups and density within a group. And the second term is manifold Laplacian regularization by which label can be accurately propagated from labeled data to unlabeled data. Augmented Lagrange Multiplier (ALM) scheme and Gauss Seidel Alternating Direction Method of Multiplier (GS-ADMM) are given to solve the problem numerically. We conduct some experiments on three human face databases and compare the proposed work with several state-of-the-art methods. For each subject, some labeled face images are randomly chosen for training for those supervised methods, and a small amount of unlabeled images are added to form the training set of the proposed approach. All experiments show our method can get better classification results due to the addition of unlabeled samples.
more »
« less
- Award ID(s):
- 1719932
- NSF-PAR ID:
- 10190433
- Date Published:
- Journal Name:
- IEEE access
- ISSN:
- 2169-3536
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This article presents a semisupervised multilabel fully convolutional network (FCN) for hierarchical object parsing of images. We consider each object part (e.g., eye and head) as a class label and learn to assign every image pixel to multiple coherent part labels. Different from previous methods that consider part labels as independent classes, our method explicitly models the internal relationships between object parts, e.g., that a pixel highly scored for eyes should be highly scored for heads as well. Such relationships directly reflect the structure of the semantic space and thus should be respected while learning the deep representation. We achieve this objective by introducing a multilabel softmax loss function over both labeled and unlabeled images and regularizing it with two pairwise ranking constraints. The first constraint is based on a manifold assumption that image pixels being visually and spatially close to each other should be collaboratively classified as the same part label. The other constraint is used to enforce that no pixel receives significant scores from more than one label that are semantically conflicting with each other. The proposed loss function is differentiable with respect to network parameters and hence can be optimized by standard stochastic gradient methods. We evaluate the proposed method on two public image data sets for hierarchical object parsing and compare it with the alternative parsing methods. Extensive comparisons showed that our method can achieve state-of-the-art performance while using 50% less labeled training samples than the alternatives.more » « less
-
High-dimensional data is commonly encountered in various applications, including genomics, as well as image and video processing. Analyzing, computing, and visualizing such data pose significant challenges. Feature extraction methods are crucial in addressing these challenges by obtaining compressed representations that are suitable for analysis and downstream tasks. One effective technique along these lines is sparse coding, which involves representing data as a sparse linear combination of a set of exemplars. In this study, we propose a local sparse coding framework within the context of a classification problem. The objective is to predict the label of a given data point based on labeled training data. The primary optimization problem encourages the representation of each data point using nearby exemplars. We leverage the optimized sparse representation coefficients to predict the label of a test data point by assessing its similarity to the sparse representations of the training data. The proposed framework is computationally efficient and provides interpretable sparse representations. To illustrate the practicality of our proposed framework, we apply it to agriculture for the classification of crop diseases.more » « less
-
We introduce Optimal Eye Surgeon (OES), a framework for pruning and training deep image generator networks. Typically, untrained deep convolutional networks, which include image sampling operations, serve as effective image priors (Ulyanov et al., 2018). However, they tend to overfit to noise in image restoration tasks due to being overparameterized. OES addresses this by adaptively pruning networks at random initialization to a level of underparameterization. This process effectively captures low-frequency image components even without training, by just masking. When trained to fit noisy images, these pruned subnetworks, which we term Sparse-DIP, resist overfitting to noise. This benefit arises from underparameterization and the regularization effect of masking, constraining them in the manifold of image priors. We demonstrate that subnetworks pruned through OES surpass other leading pruning methods, such as the Lottery Ticket Hypothesis, which is known to be suboptimal for image recovery tasks (Wu et al., 2023). Our extensive experiments demonstrate the transferability of OES-masks and the characteristics of sparse-subnetworks for image generation.more » « less
-
Physiological and behavioral data collected from wearable or mobile sensors have been used to estimate self-reported stress levels. Since stress annotation usually relies on self-reports during the study, a limited amount of labeled data can be an obstacle to developing accurate and generalized stress-predicting models. On the other hand, the sensors can continuously capture signals without annotations. This work investigates leveraging unlabeled wearable sensor data for stress detection in the wild. We propose a two-stage semi-supervised learning framework that leverages wearable sensor data to help with stress detection. The proposed structure consists of an auto-encoder pre-training method for learning information from unlabeled data and the consistency regularization approach to enhance the robustness of the model. Besides, we propose a novel active sampling method for selecting unlabeled samples to avoid introducing redundant information to the model. We validate these methods using two datasets with physiological signals and stress labels collected in the wild, as well as four human activity recognition (HAR) datasets to evaluate the generality of the proposed method. Our approach demonstrated competitive results for stress detection, improving stress classification performance by approximately 7% to 10% on the stress detection datasets compared to the baseline supervised learning models. Furthermore, the ablation study we conducted for the HAR tasks supported the effectiveness of our methods. Our approach showed comparable performance to state-of-the-art semi-supervised learning methods for both stress detection and HAR tasks.more » « less