Abstract We present spectroscopic chemical abundances of red giant branch stars in Andromeda (M31), using medium-resolution (R∼ 6000) spectra obtained via the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. In addition to individual chemical abundances, we coadd low signal-to-noise ratio spectra of stars to obtain a high enough signal to measure average [Fe/H] and [α/Fe] abundances. We obtain individual and coadded measurements for [Fe/H] and [α/Fe] for M31 halo stars, covering a range of 9–180 kpc in projected radius from the center of M31. With these measurements, we greatly increase the number of outer halo (Rproj> 50 kpc) M31 stars with spectroscopic [Fe/H] and [α/Fe], adding abundance measurements for 45 individual stars and 33 coadds from a pool of an additional 174 stars. We measure the spectroscopic metallicity ([Fe/H]) gradient, finding a negative radial gradient of −0.0084 ± 0.0008 for all stars in the halo, consistent with gradient measurements obtained using photometric metallicities. Using the first measurements of [α/Fe] for M31 halo stars covering a large range of projected radii, we find a positive gradient (+0.0027 ± 0.0005) in [α/Fe] as a function of projected radius. We also explore the distribution in [Fe/H]–[α/Fe] space as a function of projected radius for both individual and coadded measurements in the smooth halo, and compare these measurements to those stars potentially associated with substructure. These spectroscopic abundance distributions add to existing evidence that M31 has had an appreciably different formation and merger history compared to our own Galaxy.
more »
« less
Elemental Abundances in M31: Iron and Alpha Element Abundances in M31’s Outer Halo
More Like this
-
-
Abstract The evolved massive star populations of the Local Group galaxies are generally thought to be well understood. However, recent work has suggested that the Wolf–Rayet (WR) content of M31 may have been underestimated. We therefore began a pilot project to search for new WRs in M31 and to reexamine the completeness of our previous WR survey, finished almost a decade prior. Our improved imaging data and spectroscopic follow-up confirmed 19 new WRs across three small fields in M31. These newly discovered WRs are generally fainter than the previously known sample due to slightly increased reddening as opposed to intrinsic faintness. From these findings, we estimate that there are another ∼60 WRs left to be discovered in M31; however, the overall ratio of WN-type (nitrogen-rich) to WC-type (carbon-rich) WRs remains unchanged with our latest additions to the M31 WR census. We are in the process of extending this pilot WR survey to include the rest of M31, and a more complete population will be detailed in our future work.more » « less
-
Abstract Momentum feedback from isolated supernova remnants (SNRs) have been increasingly recognized by modern cosmological simulations as a resolution-independent means to implement the effects of feedback in galaxies, such as turbulence and winds. However, the integrated momentum yield from SNRs is uncertain due to the effects of SN clustering and interstellar medium (ISM) inhomogeneities. In this paper, we use spatially resolved observations of the prominent 10 kpc star-forming ring of M31 to test models of mass-weighted ISM turbulence driven by momentum feedback from isolated, nonoverlapping SNRs. We use a detailed stellar age distribution (SAD) map from the Panchromatic Hubble Andromeda Treasury survey, observationally constrained SN delay-time distributions, and maps of the atomic and molecular hydrogen to estimate the mass-weighted velocity dispersion using the Martizzi et al. ISM turbulence model. Our estimates are within a factor of two of the observed mass-weighted velocity dispersion in most of the ring, but exceed observations at densities ≲0.2 cm −3 and SN rates >2.1 × 10 −4 SN yr −1 kpc −2 , even after accounting for plausible variations in SAD models and ISM scale height assumptions. We conclude that at high SN rates the momentum deposited is most likely suppressed by the nonlinear effects of SN clustering, while at low densities, SNRs reach pressure equilibrium before the cooling phase. These corrections should be introduced in models of momentum-driven feedback and ISM turbulence.more » « less
An official website of the United States government

