skip to main content


Title: Testing the Momentum-driven Supernova Feedback Paradigm in M31
Abstract Momentum feedback from isolated supernova remnants (SNRs) have been increasingly recognized by modern cosmological simulations as a resolution-independent means to implement the effects of feedback in galaxies, such as turbulence and winds. However, the integrated momentum yield from SNRs is uncertain due to the effects of SN clustering and interstellar medium (ISM) inhomogeneities. In this paper, we use spatially resolved observations of the prominent 10 kpc star-forming ring of M31 to test models of mass-weighted ISM turbulence driven by momentum feedback from isolated, nonoverlapping SNRs. We use a detailed stellar age distribution (SAD) map from the Panchromatic Hubble Andromeda Treasury survey, observationally constrained SN delay-time distributions, and maps of the atomic and molecular hydrogen to estimate the mass-weighted velocity dispersion using the Martizzi et al. ISM turbulence model. Our estimates are within a factor of two of the observed mass-weighted velocity dispersion in most of the ring, but exceed observations at densities ≲0.2 cm −3 and SN rates >2.1 × 10 −4 SN yr −1 kpc −2 , even after accounting for plausible variations in SAD models and ISM scale height assumptions. We conclude that at high SN rates the momentum deposited is most likely suppressed by the nonlinear effects of SN clustering, while at low densities, SNRs reach pressure equilibrium before the cooling phase. These corrections should be introduced in models of momentum-driven feedback and ISM turbulence.  more » « less
Award ID(s):
1907790
NSF-PAR ID:
10376597
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We study star formation-driven outflows in a z ∼ 0.02 starbursting disc galaxy, IRAS08339+6517, using spatially resolved measurements from the Keck Cosmic Web Imager (KCWI). We develop a new method incorporating a multistep process to determine whether an outflow should be fit in each spaxel, and then subsequently decompose the emission line into multiple components. We detect outflows ranging in velocity, vout, from 100 to 600 km s−1 across a range of star formation rate surface densities, ΣSFR, from ∼0.01 to 10 M⊙ yr−1 kpc−2 in resolution elements of a few hundred parsec. Outflows are detected in ∼100 per cent of all spaxels within the half-light radius, and ∼70 per cent within r90, suggestive of a high covering fraction for this starbursting disc galaxy. Around 2/3 of the total outflowing mass originates from the star forming ring, which corresponds to ${\lt}10{{\ \rm per\ cent}}$ of the total area of the galaxy. We find that the relationship between vout and the ΣSFR, as well as between the mass loading factor, η, and the ΣSFR, are consistent with trends expected from energy-driven feedback models. We study the resolution effects on this relationship and find stronger correlations above a re-binned size-scale of ∼500 pc. Conversely, we do not find statistically significant consistency with the prediction from momentum-driven winds.

     
    more » « less
  2. Abstract

    Massive elliptical galaxies harbor large amounts of hot gas (T≳ 106K) in their interstellar medium (ISM) but are typically quiescent in star formation. The jets of active galactic nuclei (AGNs) and Type Ia supernovae (SNe Ia) inject energy into the ISM, which offsets its radiative losses and keeps it hot. SNe Ia deposit their energy locally within the galaxy compared to the larger few ×10 kiloparsec-scale AGN jets. In this study, we perform high-resolution (5123) hydrodynamic simulations of a local (1 kpc3) density-stratified patch of the ISM of massive galaxies. We include radiative cooling and shell-averaged volume heating, as well as randomly exploding SN Ia. We study the effect of different fractions of supernova (SN) heating (with respect to the net cooling rate), different initial ISM density/entropy (which controls the growth timettiof the thermal instability), and different degrees of stratification (which affect the freefall timetff). We find that SNe Ia drive predominantly compressive turbulence in the ISM with a velocity dispersion ofσvup to 40 km s−1and logarithmic density dispersion ofσs∼ 0.2–0.4. These fluctuations trigger multiphase condensation in regions of the ISM, wheremin(tti)/tff0.6exp(6σs), in agreement with theoretical expectations that large density fluctuations efficiently trigger multiphase gas formation. Since the SN Ia rate is not self-adjusting, when the net cooling drops below the net heating rate, SNe Ia drive a hot wind which sweeps out most of the mass in our local model. Global simulations are required to assess the ultimate fate of this gas.

     
    more » « less
  3. Abstract Physical and chemical properties of the interstellar medium (ISM) at subgalactic (∼kiloparsec) scales play an indispensable role in controlling the ability of gas to form stars. In this paper, we use the TNG50 cosmological simulation to explore the physical parameter space of eight resolved ISM properties in star-forming regions to constrain the areas of this hyperspace where most star-forming environments exist. We deconstruct our simulated galaxies spanning a wide range of mass ( M ⋆ = 10 7 –10 11 M ⊙ ) and redshift (0 ≤ z ≤ 3) into kiloparsec-sized regions and statistically analyze the gas/stellar surface densities, gas metallicity, vertical stellar velocity dispersion, epicyclic frequency, and dark-matter volumetric density representative of each region in the context of their star formation activity and environment (radial galactocentric location). By examining the star formation rate (SFR) weighted distributions of these properties, we show that stars primarily form in two distinct environmental regimes, which are brought about by an underlying bicomponent radial SFR profile in galaxies. We examine how the relative prominence of these regimes depends on galaxy mass and cosmic time. We also compare our findings with those from integral field spectroscopy observations and find similarities as well as departures. Further, using dimensionality reduction, we characterize the aforementioned hyperspace to reveal a high degree of multicollinearity in relationships among ISM properties that drive the distribution of star formation at kiloparsec scales. Based on this, we show that a reduced 3D representation underpinned by a multivariate radius relationship is sufficient to capture most of the variance in the original 8D space. 
    more » « less
  4. Abstract

    Understanding the interplay of stellar feedback and turbulence in the interstellar medium (ISM) is essential to modeling the evolution of galaxies. To determine the timescales over which stellar feedback drives turbulence in the ISM, we performed a spatially resolved, multiwavelength study of the nearby star-forming dwarf galaxy UGC 4305. As indicators of turbulence on local scales (400 pc), we utilized ionized gas velocity dispersion derived from IFU Hαobservations and atomic gas velocity dispersion and energy surface densities derived from Hisynthesis observations with the Very Large Array. These indicators of turbulence were tested against star formation histories over the past 560 Myr derived from color–magnitude diagrams using Spearman’s rank correlation coefficient. The strongest correlation identified at the 400 pc scale is between measures of Hiturbulence and star formation 70–140 Myr ago. We repeated our analysis of UGC 4305's current turbulence and past star formation activity on multiple physical scales (∼560 and 800 pc) to determine whether there are indications of changes in the correlation timescale with changes to the physical scale. No notable correlations were found at larger physical scales, emphasizing the importance of analyzing star formation-driven turbulence as a local phenomenon.

     
    more » « less
  5. ABSTRACT

    We use analytical calculations and time-dependent spherically symmetric simulations to study the properties of isothermal galactic winds driven by cosmic rays (CRs) streaming at the Alfvén velocity. The simulations produce time-dependent flows permeated by strong shocks; we identify a new linear instability of sound waves that sources these shocks. The shocks substantially modify the wind dynamics, invalidating previous steady state models: the CR pressure pc has a staircase-like structure with dpc/dr ≃ 0 in most of the volume, and the time-averaged CR energetics are in many cases better approximated by pc ∝ ρ1/2, rather than the canonical pc ∝ ρ2/3. Accounting for this change in CR energetics, we analytically derive new expressions for the mass-loss rate, momentum flux, wind speed, and wind kinetic power in galactic winds driven by CR streaming. We show that streaming CRs are ineffective at directly driving cold gas out of galaxies, though CR-driven winds in hotter ISM phases may entrain cool gas. For the same physical conditions, diffusive CR transport (Paper I) yields mass-loss rates that are a few-100 times larger than streaming transport, and asymptotic wind powers that are a factor of ≃4 larger. We discuss the implications of our results for galactic wind theory and observations; strong shocks driven by CR-streaming-induced instabilities produce gas with a wide range of densities and temperatures, consistent with the multiphase nature of observed winds. We also quantify the applicability of the isothermal gas approximation for modelling streaming CRs and highlight the need for calculations with more realistic thermodynamics.

     
    more » « less