We study the problem of learning hierarchical polynomials over the standard Gaussian distribution with three-layer neural networks. We specifically consider target functions of the form where is a degree polynomial and is a degree polynomial. This function class generalizes the single-index model, which corresponds to , and is a natural class of functions possessing an underlying hierarchical structure. Our main result shows that for a large subclass of degree polynomials , a three-layer neural network trained via layerwise gradient descent on the square loss learns the target up to vanishing test error in samples and polynomial time. This is a strict improvement over kernel methods, which require samples, as well as existing guarantees for two-layer networks, which require the target function to be low-rank. Our result also generalizes prior works on three-layer neural networks, which were restricted to the case of being a quadratic. When is indeed a quadratic, we achieve the information-theoretically optimal sample complexity , which is an improvement over prior work (Nichani et al., 2023) requiring a sample size of . Our proof proceeds by showing that during the initial stage of training the network performs feature learning to recover the feature with samples. This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions. 
                        more » 
                        « less   
                    
                            
                            Superpolynomial Lower Bounds for Learning One-Layer Neural Networks using Gradient Descent
                        
                    
    
            We prove the first superpolynomial lower bounds for learning one-layer neural networks with respect to the Gaussian distribution using gradient descent. We show that any classifier trained using gradient descent with respect to square-loss will fail to achieve small test error in polynomial time given access to samples labeled by a one-layer neural network. For classification, we give a stronger result, namely that any statistical query (SQ) algorithm (including gradient descent) will fail to achieve small test error in polynomial time. Prior work held only for gradient descent run with small batch sizes, required sharp activations, and applied to specific classes of queries. Our lower bounds hold for broad classes of activations including ReLU and sigmoid. The core of our result relies on a novel construction of a simple family of neural networks that are exactly orthogonal with respect to all spherically symmetric distributions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1717896
- PAR ID:
- 10190453
- Date Published:
- Journal Name:
- International Conference on Machine Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We consider networks, trained via stochastic gradient descent to minimize L2 loss, with the training labels perturbed by independent noise at each iteration. We characterize the behavior of the training dynamics near any parameter vector that achieves zero training error, in terms of an implicit regularization term corresponding to the sum over the datapoints, of the squared L2 of the gradient of the model with respect to the parameter vector, evaluated at each data point. This holds for networks of any connectivity, width,depth, and choice of activation function. We interpret this implicit regularization term for three simple settings: matrix sensing, two layer ReLU networks trained on one-dimensional data, and two layer networks with sigmoid activations trained on a single datapoint. For these settings, we show why this new and general implicit regularization effect drives the networks towards "simple" models.more » « less
- 
            We consider the problem of learning function classes computed by neural networks with various activations (e.g. ReLU or Sigmoid), a task believed to be computationally intractable in the worst-case. A major open problem is to understand the minimal assumptions under which these classes admit provably efficient algorithms. In this work we show that a natural distributional assumption corresponding to {\em eigenvalue decay} of the Gram matrix yields polynomial-time algorithms in the non-realizable setting for expressive classes of networks (e.g. feed-forward networks of ReLUs). We make no assumptions on the structure of the network or the labels. Given sufficiently-strong polynomial eigenvalue decay, we obtain {\em fully}-polynomial time algorithms in {\em all} the relevant parameters with respect to square-loss. Milder decay assumptions also lead to improved algorithms. This is the first purely distributional assumption that leads to polynomial-time algorithms for networks of ReLUs, even with one hidden layer. Further, unlike prior distributional assumptions (e.g., the marginal distribution is Gaussian), eigenvalue decay has been observed in practice on common data sets.more » « less
- 
            We give the first provably efficient algorithms for learning neural networks with distribution shift. We work in the Testable Learning with Distribution Shift framework (TDS learning) of Klivans et al. (2024), where the learner receives labeled examples from a training distribution and unlabeled examples from a test distribution and must either output a hypothesis with low test error or reject if distribution shift is detected. No assumptions are made on the test distribution. All prior work in TDS learning focuses on classification, while here we must handle the setting of nonconvex regression. Our results apply to real-valued networks with arbitrary Lipschitz activations and work whenever the training distribution has strictly sub-exponential tails. For training distributions that are bounded and hypercontractive, we give a fully polynomial-time algorithm for TDS learning one hidden-layer networks with sigmoid activations. We achieve this by importing classical kernel methods into the TDS framework using data-dependent feature maps and a type of kernel matrix that couples samples from both train and test distributions.more » « less
- 
            We study deep neural networks with polynomial activations, particularly their expressive power. For a fixed architecture and activation degree, a polynomial neural network defines an algebraic map from weights to polynomials. The image of this map is the functional space associated to the network, and it is an irreducible algebraic variety upon taking closure. This paper proposes the dimension of this variety as a precise measure of the expressive power of polynomial neural networks. We obtain several theoretical results regarding this dimension as a function of architecture, including an exact formula for high activation degrees, as well as upper and lower bounds on layer widths in order for deep polynomials networks to fill the ambient functional space. We also present computational evidence that it is profitable in terms of expressiveness for layer widths to increase monotonically and then decrease monotonically. Finally, we link our study to favorable optimization properties when training weights, and we draw intriguing connections with tensor and polynomial decompositions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    