skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Differentially Private Nonparametric Hypothesis Testing
Hypothesis tests are a crucial statistical tool for data mining and are the workhorse of scientific research in many fields. Here we study differentially private tests of independence between a categorical and a continuous variable. We take as our starting point traditional nonparametric tests, which require no distributional assumption (e.g., normality) about the data distribution. We present private analogues of the Kruskal-Wallis, Mann-Whitney, and Wilcoxon signed-rank tests, as well as the parametric one-sample t-test. These tests use novel test statistics developed specifically for the private setting. We compare our tests to prior work, both on parametric and nonparametric tests. We find that in all cases our new nonparametric tests achieve large improvements in statistical power, even when the assumptions of parametric tests are met.  more » « less
Award ID(s):
1817245
PAR ID:
10190502
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS)
Page Range / eLocation ID:
737 to 751
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop an analytical framework to appropriately model and adequately analyze A/B tests in presence of nonparametric nonstationarities in the targeted business metrics. A/B tests, also known as online randomized controlled experiments, have been used at scale by data-driven enterprises to guide decisions and test innovative ideas to improve core business metrics. Meanwhile, nonstationarities, such as the time-of-day effect and the day-of-week effect, can often arise nonparametrically in key business metrics involving purchases, revenue, conversions, customer experiences, and so on. First, we develop a generic nonparametric stochastic model to capture nonstationarities in A/B test experiments, where each sample represents a visit or action associated with a time label. We build a practically relevant limiting regime to facilitate analyzing large-sample estimator performances under nonparametric nonstationarities. Second, we show that ignoring or inadequately addressing nonstationarities can cause standard A/B test estimators to have suboptimal variance and nonvanishing bias, therefore leading to loss of statistical efficiency and accuracy. We provide a new estimator that views time as a continuous strata and performs poststratification with a data-dependent number of stratification levels. Without making parametric assumptions, we prove a central limit theorem for the proposed estimator and show that the estimator attains the best achievable asymptotic variance and is asymptotically unbiased. Third, we propose a time-grouped randomization that is designed to balance treatment and control assignments at granular time scales. We show that when the time-grouped randomization is integrated to standard experimental designs to generate experiment data, simple A/B test estimators can achieve asymptotically optimal variance. A brief account of numerical experiments are conducted to illustrate the analysis. This paper was accepted by Baris Ata, stochastic models and simulation. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.01205 . 
    more » « less
  2. We propose a general method for constructing confidence sets and hypothesis tests that have finite-sample guarantees without regularity conditions. We refer to such procedures as “universal.” The method is very simple and is based on a modified version of the usual likelihood-ratio statistic that we call “the split likelihood-ratio test” (split LRT) statistic. The (limiting) null distribution of the classical likelihood-ratio statistic is often intractable when used to test composite null hypotheses in irregular statistical models. Our method is especially appealing for statistical inference in these complex setups. The method we suggest works for any parametric model and also for some nonparametric models, as long as computing a maximum-likelihood estimator (MLE) is feasible under the null. Canonical examples arise in mixture modeling and shape-constrained inference, for which constructing tests and confidence sets has been notoriously difficult. We also develop various extensions of our basic methods. We show that in settings when computing the MLE is hard, for the purpose of constructing valid tests and intervals, it is sufficient to upper bound the maximum likelihood. We investigate some conditions under which our methods yield valid inferences under model misspecification. Further, the split LRT can be used with profile likelihoods to deal with nuisance parameters, and it can also be run sequentially to yield anytime-valid P values and confidence sequences. Finally, when combined with the method of sieves, it can be used to perform model selection with nested model classes. 
    more » « less
  3. Summary Since the introduction of fiducial inference by Fisher in the 1930s, its application has been largely confined to relatively simple, parametric problems. In this paper, we present what might be the first time fiducial inference is systematically applied to estimation of a nonparametric survival function under right censoring. We find that the resulting fiducial distribution gives rise to surprisingly good statistical procedures applicable to both one-sample and two-sample problems. In particular, we use the fiducial distribution of a survival function to construct pointwise and curvewise confidence intervals for the survival function, and propose tests based on the curvewise confidence interval. We establish a functional Bernstein–von Mises theorem, and perform thorough simulation studies in scenarios with different levels of censoring. The proposed fiducial-based confidence intervals maintain coverage in situations where asymptotic methods often have substantial coverage problems. Furthermore, the average length of the proposed confidence intervals is often shorter than the length of confidence intervals for competing methods that maintain coverage. Finally, the proposed fiducial test is more powerful than various types of log-rank tests and sup log-rank tests in some scenarios. We illustrate the proposed fiducial test by comparing chemotherapy against chemotherapy combined with radiotherapy, using data from the treatment of locally unresectable gastric cancer. 
    more » « less
  4. Abstract A primary challenge in the analysis of RNA-seq data is to identify differentially expressed genes or transcripts while controlling for technical biases. Ideally, a statistical testing procedure should incorporate the inherent uncertainty of the abundance estimates arising from the quantification step. Most popular methods for RNA-seq differential expression analysis fit a parametric model to the counts for each gene or transcript, and a subset of methods can incorporate uncertainty. Previous work has shown that nonparametric models for RNA-seq differential expression may have better control of the false discovery rate, and adapt well to new data types without requiring reformulation of a parametric model. Existing nonparametric models do not take into account inferential uncertainty, leading to an inflated false discovery rate, in particular at the transcript level. We propose a nonparametric model for differential expression analysis using inferential replicate counts, extending the existing SAMseq method to account for inferential uncertainty. We compare our method, Swish, with popular differential expression analysis methods. Swish has improved control of the false discovery rate, in particular for transcripts with high inferential uncertainty. We apply Swish to a single-cell RNA-seq dataset, assessing differential expression between sub-populations of cells, and compare its performance to the Wilcoxon test. 
    more » « less
  5. Though statistical analyses are centered on research questions and hypotheses, current statistical analysis tools are not. Users must first translate their hypotheses into specific statistical tests and then perform API calls with functions and parameters. To do so accurately requires that users have statistical expertise. To lower this barrier to valid, replicable statistical analysis, we introduce Tea, a high-level declarative language and runtime system. In Tea, users express their study design, any parametric assumptions, and their hypotheses. Tea compiles these high-level specifications into a constraint satisfaction problem that determines the set of valid statistical tests and then executes them to test the hypothesis. We evaluate Tea using a suite of statistical analyses drawn from popular tutorials. We show that Tea generally matches the choices of experts while automatically switching to non-parametric tests when parametric assumptions are not met. We simulate the effect of mistakes made by non-expert users and show that Tea automatically avoids both false negatives and false positives that could be produced by the application of incorrect statistical tests. 
    more » « less