skip to main content

Title: Complexity, Right Action, and the Engineering Curriculum
oday’s engineering students face a very different world than their predecessors. As engineering has adapted to a more global and interconnected economy, the issues that face today’s engineers have become more complex. In a highly networked world notions of the impact of an engineer’s actions on others, the basis for moral and ethical behavior, also become more complex. The definition of complex here captures higher-order and emergent behaviors, situations that can change rapidly, limitations to predictability, and behavior arising from interactions rather than innate to components. While ethics has remained central to engineering education and in general has retained its deontological basis, the ideas the serve as the basis for engineering ethics have changed over time and can be expected to change in the future. The fact that the future ethical challenges that engineering students will face will be distributed and complex while most engineering curricula focus on simplified systems and decisions indicates emerging challenges for effectively addressing engineering ethics within the curriculum. Frameworks that distinguish simple and complicated from complex systems—in which outcomes are more uncertain—emphasize that action becomes more important than knowledge. In other words, it is more important to do what is right, even if one’s actions are more » imperfect, than know what is right to do. This paper explores the intersection of engineering curricula and engineering ethics from the perspective of “right action”, that is being able in act in ways that lead to ethical outcomes. It is argued that by focusing predominately on knowledge and situating learning in academic settings engineering curricula miss opportunities for developing capabilities for action. Through this lens the opportunities to address engineering ethics in the curriculum are seen to lie predominately outside traditional coursework. « less
Award ID(s):
Publication Date:
Journal Name:
American Society for Engineering Engineering Education Annual Conference and Exhibition
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional engineering courses typically approach teaching and problem solving by focusing on the physical dimensions of those problems without consideration of dynamic social and ethical dimensions. As such, projects can fail to consider community questions and concerns, broader impacts upon society, or otherwise result in inequitable outcomes. And, despite the fact that students in engineering receive training on the Professional Code of Ethics for Engineers, to which they are expected to adhere in practice, many students are unable to recognize and analyze real-life ethical challenges as they arise. Indeed, research has found that students are typically less engaged with ethics—defined as the awareness and judgment of microethics and macroethics, sensitivity to diversity, and interest in promoting organizational ethical culture—at the end of their engineering studies than they were at the beginning. As such, many studies have focused on developing and improving the curriculum surrounding ethics through, for instance, exposing students to ethics case studies. However, such ethics courses often present a narrow and simplified view of ethics that students may struggle to integrate with their broader experience as engineers. Thus, there is a critical need to unpack the complexity of ethical behavior amongst engineering students in order to determine howmore »to better foster ethical judgment and behavior. Promoting ethical behavior among engineering students and developing a culture of ethical behavior within institutions have become goals of many engineering programs. Towards this goal, we present an overview of the current scholarship of engineering ethics and propose a theoretical framework of ethical behavior using a review of articles related to engineering ethics from 1990-2020. These articles were selected based upon their diversity of scope and methods until saturation was reached. A thematic analysis of articles was then performed using Nvivo. The review engages in theories across disciplines including philosophy, education and psychology. Preliminary results identify two major kinds of drivers of ethical behavior, namely individual level ethical behavior drivers (awareness of microethics, awareness of macroethics, implicit understanding, and explicit understanding) and institutional drivers (diversity and institutional ethical culture). In this paper, we present an overview and discussion of two drivers of ethical behavior at the individual level, namely awareness of microethics and awareness of macroethics, based on a review of 50 articles. Our results indicate that an awareness of both microethics and macroethics is essential in promoting ethical behavior amongst students. The review also points to a need to focus on increasing students’ awareness of macroethics. This research thus addresses the need, driven by existing scholarship, to identify a conceptual framework for explaining how ethical judgment and behavior in engineering can be further promoted.« less
  2. The devastation caused by recent natural disasters, such as earthquakes, tsunamis, and hurricanes, has increased awareness regarding the importance of providing interdisciplinary solutions to complex infrastructure challenges. In October 2018, the University of Puerto Rico received a Hispanic Serving Institution (HSI) collaborative award from the National Science Foundation (NSF) to develop an integrated curriculum on resilient and sustainable infrastructure. The project titled “Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP) aims to educate future environmental designers and engineers to design and build a more resilient and sustainable infrastructure for Puerto Rico. This paper presents the design, initial implementation, and assessment of a curriculum encompassing synergistic interactions among these four domains: integrated project delivery, user-centered design, interdisciplinary problem-solving, and sustainability and resiliency. The project seeks to foster interdisciplinary problem-solving skills involving architects, engineers and construction managers, in order to better prepare them to face and provide solutions to minimize the impact of extreme natural environment events on infrastructure. The new curriculum stresses on problem-settings, the role that participants have on defining the characteristics of the problems that have to be solved, learning in action, reflecting on the process, and communication between the different stakeholders. This multisite and interdisciplinary program providesmore »students with the necessary support, knowledge, and skills necessary to design and build resilient and sustainable infrastructure. This instructional endeavor consists of four courses designed to reduce gradually the difference between what students are able to accomplish with support structures and what students are able to accomplish on their own. To maximize and enhance the educational experience, the program blends a technology-infused classroom learning with broad co-curricular opportunities such as site visits, undergraduate research, and internships. As students advance in the program, they will be exposed and required to perform increasingly complex tasks. During the first year of the program, the following outcomes were achieved: 1) implementation of the faculty teamwork process to develop courses and analyze cases from an interdisciplinary perspective, 2) development and approval of an interdisciplinary curriculum on resilient and sustainable infrastructure, 3) development of case studies on situations associated with disaster and interdisciplinary responses, 4) development of a case study database, 5) establishment of an Advisory Board with government agency representatives and faculty, and 6) recruitment and enrollment of 30 students as the first RISE-UP cohort. In summary, the body of knowledge acquired from this project can serve as a model that can be replicated to develop and enhance academic programs at other institutions.« less
  3. What will it take to create a transformation in human society to coexist with our human and more-than-human earth kin?” – Journal of Sustainability Education call for papers 2021 The question of what it will take to induce societal transformation in the face of climate change is daunting to consider, intimidating to try and answer in the abstract, and potentially paralyzing to try and address through teaching, research, and practice. That is, in response to the JSE editors’ question, we may be tempted to simply curl up in a ball and rock back and forth in search of temporary comfort and escape. Yet, in crafting the subtitle for this issue on climate change, JSE’s editorial team has pointed to multiple paths forward: resistance, recuperation, and resilience. Each of those terms have their roots in sustained action, with the Latin meaning of the ‘re’ prefix based in doing again and again (, 1995). The same implication is present with kindred concepts often used in the realm of grappling with climate change like regeneration, reparations, restoration, recentering, and renewal. Altogether the emphasis on sustained actions, with each term in its own way looking both backwards and forwards in time and knowledge, raisesmore »a very direct challenge for educators: how do we help students (and ourselves) prepare to engage in sustained action in the face of climate change and its root causes of extraction, inequity, racism and colonialism? In this article, we describe our response to this question, admittedly very much a work in progress. We first elaborate on the conceptual and practical challenges in preparing students for sustained action to imagine and enact the future. Paramount among these challenges is acknowledging that climate change cannot be addressed in an equitable way without also addressing its roots in colonization, racism, sexism, and extractive capitalism. Next, we discuss our integrated teaching-research-engagement approach, developed as part of a US National Science Foundation CAREER award project aimed at examining the potential role of compassion as a transformative practice for reducing long-term risks from natural hazards and climate change. Then, we provide summaries of and reflections on a pair of courses taught in 2019 and 2020 that explored, respectively the inner personal dimensions and external relational dimensions of professional work to reduce climate risks. Finally, we detail some of the lessons we’ve learned in the processes of convening these courses and look to future opportunities for growth and sustained action as educators ourselves.« less
  4. Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications. The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goalmore »of these internships is to improve engineering teachers’ knowledge of bio-inspired design by partnering with cutting-edge engineers and scientists to study animal features and behaviors and their applications to engineering design. However, due to COVID-19 and research lab closures in the summer of 2020, the research team had to transfer the summer PD experience to an online setting. An asynchronous, quasi-facilitated online course was developed and delivered to teachers over six weeks. In this paper, we will discuss online pedagogical approaches to experiential learning, teaching bio-inspired design concepts, and the integration of these approaches in the engineering design process. Central to the online PD design and function of each course was the use of inquiry, experiential and highly-collaborative learning strategies. Preliminary results show that teachers appreciated the aspects of the summer PD that included exploration, such as during the “Found Object” activity, and the process of building a prototype. These activities represented experiential learning opportunities where teachers were able to learn by doing. It was noted throughout the focus group discussions that such opportunities were appreciated by participating teachers. Teachers indicated that the experiential learning components of the PD allowed them to do something outside of their comfort zone, inspired them to do research that they would not have done outside of this experience, and allowed them to “be in the student's seat and get hands-on application”. By participating in these experiential learning opportunities, teachers were also able to better understand how the BIRDEE curriculum may impact students’ learning in their classrooms« less
  5. Emphasizing socio-political context in undergraduate engineering courses is a complex challenge for accredited American engineering programs as they strive to pivot towards a more equitable future. Teaching engineering problem solving by isolating the technical perspective is the dominant culture, and change has been slow and insufficient. Looking at the complex human circumstances in which engineered systems are situated has significant, and sometimes life saving, benefits. On the contrary, the common de-contextualized approach to teaching engineering has been shown to have significant impacts on how students behave as future engineers. Furthermore, eurocentric teaching practices have been documented as a contributor to the lack of gender and ethnic diversity in engineering. Re-contextualizing civil engineering courses has shown to increase students' motivation, sense of social responsibility, and agency. The ASCE Code of Ethics states that “Engineers … first and foremost, protect the health, safety, and welfare of the public,” a notion that was first added to the code in 1977. In recent years, some civil and environmental engineering (CEE) faculty members and programs have responded to this ethical imperative by re-contextualizing civil engineering education in relation to the communities (“the public”) the civil engineer is ethically obligated to protect and serve. To determinemore »the extent of these efforts to re-introduce socio-technical context in CEE curricula, we are conducting a systematic review of the published literature. The objectives of this research are to document, synthesize, and amplify the work of these scholars and to encourage the community of CEE faculty to re-contextualize the knowledge and skills taught in the CEE curriculum. This paper describes the methodology, including search terms and sources examined, reports the preliminary results of the review, and synthesizes the preliminary findings. Future work will propose strategies and structures that could be adapted and employed by civil engineering faculty throughout the U.S. to 1) engage and retain students from groups that historically have been excluded from CEE and 2) better educate CEE students to engineer a more equitable and just future.« less