In the engineering ethics education literature, there has recently been increasing interest in longitudinal studies of engineering students’ moral development. Understanding how first-year engineering students perceive ethics can provide baseline information critical for understanding their moral development during their subsequent journey in engineering learning. Existing studies have mainly examined how first-year engineering students perceive the structure and elements of ethics curricula, pregiven ethics scenarios, what personal ethical beliefs and specific political ideals they hold (e.g., fairness and political involvement), and institutional ethical climates. Complementary to existing studies, our project surveyed how first-year engineering students perceive professional ethical values. Specifically, we asked students to list the three most important values for defining a good engineer. This question responds to a gap in existing engineering ethics literature that engineering students’ perceptions (especially first-year students) of professional virtues and values are not sufficiently addressed. We argue that designing effective and engaged ethics education experiences needs to consider the professional values perceived by students and how these values are related to the values communicated in the engineering curriculum. This paper is part of a larger project that compares how engineering students develop moral reasoning and intuition longitudinally across three cultures/countries: the United States, Netherlands, and China. We hope that findings from this paper can be useful for engineering educators to reflect on and design subsequent ethics education programs that are more responsive to students’ perceptions of professional values when beginning an engineering program.
more »
« less
Complexity, Right Action, and the Engineering Curriculum
oday’s engineering students face a very different world than their predecessors. As engineering has adapted to a more global and interconnected economy, the issues that face today’s engineers have become more complex. In a highly networked world notions of the impact of an engineer’s actions on others, the basis for moral and ethical behavior, also become more complex. The definition of complex here captures higher-order and emergent behaviors, situations that can change rapidly, limitations to predictability, and behavior arising from interactions rather than innate to components. While ethics has remained central to engineering education and in general has retained its deontological basis, the ideas the serve as the basis for engineering ethics have changed over time and can be expected to change in the future. The fact that the future ethical challenges that engineering students will face will be distributed and complex while most engineering curricula focus on simplified systems and decisions indicates emerging challenges for effectively addressing engineering ethics within the curriculum. Frameworks that distinguish simple and complicated from complex systems—in which outcomes are more uncertain—emphasize that action becomes more important than knowledge. In other words, it is more important to do what is right, even if one’s actions are imperfect, than know what is right to do. This paper explores the intersection of engineering curricula and engineering ethics from the perspective of “right action”, that is being able in act in ways that lead to ethical outcomes. It is argued that by focusing predominately on knowledge and situating learning in academic settings engineering curricula miss opportunities for developing capabilities for action. Through this lens the opportunities to address engineering ethics in the curriculum are seen to lie predominately outside traditional coursework.
more »
« less
- Award ID(s):
- 1745922
- PAR ID:
- 10190507
- Date Published:
- Journal Name:
- American Society for Engineering Engineering Education Annual Conference and Exhibition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Traditional engineering courses typically approach teaching and problem solving by focusing on the physical dimensions of those problems without consideration of dynamic social and ethical dimensions. As such, projects can fail to consider community questions and concerns, broader impacts upon society, or otherwise result in inequitable outcomes. And, despite the fact that students in engineering receive training on the Professional Code of Ethics for Engineers, to which they are expected to adhere in practice, many students are unable to recognize and analyze real-life ethical challenges as they arise. Indeed, research has found that students are typically less engaged with ethics—defined as the awareness and judgment of microethics and macroethics, sensitivity to diversity, and interest in promoting organizational ethical culture—at the end of their engineering studies than they were at the beginning. As such, many studies have focused on developing and improving the curriculum surrounding ethics through, for instance, exposing students to ethics case studies. However, such ethics courses often present a narrow and simplified view of ethics that students may struggle to integrate with their broader experience as engineers. Thus, there is a critical need to unpack the complexity of ethical behavior amongst engineering students in order to determine how to better foster ethical judgment and behavior. Promoting ethical behavior among engineering students and developing a culture of ethical behavior within institutions have become goals of many engineering programs. Towards this goal, we present an overview of the current scholarship of engineering ethics and propose a theoretical framework of ethical behavior using a review of articles related to engineering ethics from 1990-2020. These articles were selected based upon their diversity of scope and methods until saturation was reached. A thematic analysis of articles was then performed using Nvivo. The review engages in theories across disciplines including philosophy, education and psychology. Preliminary results identify two major kinds of drivers of ethical behavior, namely individual level ethical behavior drivers (awareness of microethics, awareness of macroethics, implicit understanding, and explicit understanding) and institutional drivers (diversity and institutional ethical culture). In this paper, we present an overview and discussion of two drivers of ethical behavior at the individual level, namely awareness of microethics and awareness of macroethics, based on a review of 50 articles. Our results indicate that an awareness of both microethics and macroethics is essential in promoting ethical behavior amongst students. The review also points to a need to focus on increasing students’ awareness of macroethics. This research thus addresses the need, driven by existing scholarship, to identify a conceptual framework for explaining how ethical judgment and behavior in engineering can be further promoted.more » « less
-
In this paper, we argue that engineering ethics education does have moral implications. More specifically, practices in engineering ethics education can lead to negative moral consequences if not conducted appropriately. Engineering ethics educators are often passionate about teaching students ways to examine the ethical implications of engineering and technology. However, ethics educators may overlook the moral significance of their instructional classroom practices. In this paper, we discuss two issues: First, we discuss the moral impacts of ethics curriculum and pedagogies on students’ learning experiences. Then we discuss the professional responsibilities of educators who are involved in designing ethics learning experiences for engineering students. The reflections presented in this paper will serve as catalysts for more comprehensive discussions regarding the impact of engineering ethics education on the ethical development of engineering students.more » « less
-
Although development of Artificial Intelligence (AI) technologies has been underway for decades, the acceleration of AI capabilities and rapid expansion of user access in the past few years has elicited public excitement as well as alarm. Leaders in government and academia, as well as members of the public, are recognizing the critical need for the ethical production and management of AI. As a result, society is placing immense trust in engineering undergraduate and graduate programs to train future developers of AI in their ethical and public welfare responsibilities. In this paper, we investigate whether engineering master’s students believe they receive the training they need from their educational curricula to negotiate this complex ethical landscape. The goal of the broader project is to understand how engineering students become public welfare “watchdogs”; i.e., how they learn to recognize and respond to their public welfare responsibilities. As part of this project, we conducted in-depth interviews with 62 electrical and computer engineering master’s students at a large public university about their educational experiences and understanding of engineers’ professional responsibilities, including those related specifically to AI technologies. This paper asks, (1) do engineering master’s students see potential dangers of AI related to how the technologies are developed, used, or possibly misused? (2) Do they feel equipped to handle the challenges of these technologies and respond ethically when faced with difficult situations? (3) Do they hold their engineering educators accountable for training them in ethical concerns around AI? We find that although some engineering master’s students see exciting possibilities of AI, most are deeply concerned about the ethical and public welfare issues that accompany its advancement and deployment. While some students feel equipped to handle these challenges, the majority feel unprepared to manage these complex situations in their professional work. Additionally, students reported that the ethical development and application of technologies like AI is often not included in curricula or are viewed as “soft skills” that are not as important as “technical” knowledge. Although some students we interviewed shared the sense of apathy toward these topics that they see from their engineering program, most were eager to receive more training in AI ethics. These results underscore the pressing need for engineering education programs, including graduate programs, to integrate comprehensive ethics, public responsibility, and whistleblower training within their curricula to ensure that the engineers of tomorrow are well-equipped to address the novel ethical dilemmas of AI that are likely to arise in the coming years.more » « less
-
In the engineering ethics education literature, there has recently been an increasing interest in longitudinal studies of engineering students’ moral development. Understanding how first-year engineering students perceive ethics can provide baseline information critical for understanding their moral development during their subsequent journey in engineering learning. Existing studies have mainly examined how first-year engineering students perceived the structure and elements of ethics curricula, personal ethical beliefs, pregiven ethics scenarios, institutional ethical climates, and particular political ideals (e.g., fairness and political involvement). Complementary to the existing studies, our project surveyed how first-year engineering students perceived public welfare beliefs, examples of (un-)ethical behaviors in engineering, and professional ethical values. Specifically, we adopted part of the well-known instrument developed by Erin Cech to assess how students perceived public welfare beliefs. An important goal of replicating Cech’s work is to examine whether students from a different cohort (i.e., 18 years after the cohort in Cech’s study, and from a more specialized institution than those in Cech’s study) hold different public welfare beliefs. We invite engineering educators to carefully examine how temporality might matter when considering the connections between previously conducted studies with their own ongoing projects. Our survey also asked students to provide an example of unethical behavior in engineering and possible ethical problems they anticipate in their future careers. Finally, we asked students to list three most important values for defining a good engineer. Such a question on professional ethical values responds to a gap in the engineering ethics literature, namely, that engineering students’ perceptions of professional virtues and values are not sufficiently addressed (especially among first-year students). This paper is part of a larger project that compares how students develop moral reasoning and intuition longitudinally across three cultures/countries: the United States, Netherlands, and China. We hope that findings in this paper can be useful for engineering educators to reflect on and design subsequent ethics education programs that are more responsive to students’ backgrounds and needs when they start their first year in engineering programs.more » « less