skip to main content


Title: Rapid macrobenthic diversification and stabilization after the end-Cretaceous mass extinction event
Previous ichnological analysis at the Chicxulub impact crater, Yucatán Peninsula, México (International Ocean Discovery Program [IODP]/International Continental Scientific Drilling Program [ICDP] Site M0077), showed a surprisingly rapid initial tracemaker community recovery after the end-Cretaceous (Cretaceous-Paleogene [K-Pg]) mass extinction event. Here, we found that full recovery was also rapid, with the establishment of a well-developed tiered community within ~700 k.y. Several stages of recovery were observed, with distinct phases of stabilization and diversification, ending in the development of a trace fossil assemblage mainly consisting of abundant Zoophycos, Chondrites, and Planolites, assigned to the Zoophycos ichnofacies. The increase in diversity is associated with higher abundance, larger forms, and a deeper and more complex tiering structure. Such rapid recovery suggests that favorable paleoenvironmental conditions were quickly reestablished within the impact basin, enabling colonization of the substrate. Comparison with the end-Permian extinction reveals similarities during recovery, yet postextinction recovery was significantly faster after the K-Pg event. The rapid recovery has significant implications for the evolution of macrobenthic biota after the K-Pg event. Our results have relevance in understanding how communities recovered after the K-Pg impact and how this event differed from other mass extinction events.  more » « less
Award ID(s):
1737351
NSF-PAR ID:
10190619
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geology
ISSN:
0091-7613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Chicxulub impact crater, on the Yucatán Peninsula of México, is unique. It is the only known terrestrial impact structure that has been directly linked to a mass extinction event and the only terrestrial impact with a global ejecta layer. Of the three largest impact structures on Earth, Chicxulub is the best preserved. Chicxulub is also the only known terrestrial impact structure with an intact, unequivocal topographic peak ring. Chicxulub’s role in the Cretaceous/Paleogene (K-Pg) mass extinction and its exceptional state of preservation make it an important natural laboratory for the study of both large impact crater formation on Earth and other planets and the effects of large impacts on the Earth’s environment and ecology. Our understanding of the impact process is far from complete, and despite more than 30 years of intense debate, we are still striving to answer the question as to why this impact was so catastrophic. During International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364, Paleogene sedimentary rocks and lithologies that make up the Chicxulub peak ring were cored to investigate (1) the nature and formational mechanism of peak rings, (2) how rocks are weakened during large impacts, (3) the nature and extent of post-impact hydrothermal circulation, (4) the deep biosphere and habitability of the peak ring, and (5) the recovery of life in a sterile zone. Other key targets included sampling the transition through a rare midlatitude Paleogene sedimentary succession that might include Eocene and Paleocene hyperthermals and/or the Paleocene/Eocene Thermal Maximum (PETM); the composition and character of suevite, impact melt rock, and basement rocks in the peak ring; the sedimentology and stratigraphy of the Paleocene–Eocene Chicxulub impact basin infill; the geo- and thermochronology of the rocks forming the peak ring; and any observations from the core that may help constrain the volume of dust and climatically active gases released into the stratosphere by this impact. Petrophysical properties measurements on the core and wireline logs acquired during Expedition 364 will be used to calibrate geophysical models, including seismic reflection and potential field data, and the integration of all the data will calibrate models for impact crater formation and environmental effects. The drilling directly contributes to IODP Science Plan goals: Climate and Ocean Change: How does Earth’s climate system respond to elevated levels of atmospheric CO2? How resilient is the ocean to chemical perturbations? The Chicxulub impact represents an external forcing event that caused a 75% species level mass extinction. The impact basin may also record key hyperthermals within the Paleogene. Biosphere Frontiers: What are the origin, composition, and global significance of subseafloor communities? What are the limits of life in the subseafloor? How sensitive are ecosystems and biodiversity to environmental change? Impact craters can create habitats for subsurface life, and Chicxulub may provide information on potential habitats for life, including extremophiles, on the early Earth and other planetary bodies. Paleontological and geochemical studies at ground zero will document how large impacts affect ecosystems and biodiversity. Earth Connections/Earth in Motion: What mechanisms control the occurrence of destructive earthquakes, landslides, and tsunami? Drilling into the uplifted rocks that form the peak ring will be used to groundtruth numerical simulations and model impact-generated tsunami, and deposits on top of the peak ring and around the Gulf of México will inform us about earthquakes, landslides, and tsunami generated by Chicxulub. These data will collectively help us understand how impact processes are recorded in the geologic record and their potential hazards. IODP Expedition 364 was a Mission Specific Platform expedition designed to obtain subseabed samples and downhole logging measurements from the post-impact sedimentary succession and the peak ring of the Chicxulub impact crater. A single borehole (Hole M0077A) was drilled into the Chicxulub impact crater on the Yucatán continental shelf, recovering core from 505.70 to 1334.69 meters below seafloor (mbsf) with ~99% core recovery. Downhole logs were acquired for the entire depth of the borehole. 
    more » « less
  2. null (Ed.)
    The Chicxulub impact crater, México, is unique. It is the only known terrestrial impact structure that has been directly linked to a mass extinction event and the only terrestrial impact with a global ejecta layer. Of the three largest impact structures on Earth, Chicxulub is the best preserved. Chicxulub is also the only known terrestrial impact structure with an intact, unequivocal topographic peak ring. Chicxulub’s role in the Cretaceous/Paleogene (K-Pg) mass extinction and its exceptional state of preservation make it an important natural laboratory for the study of both large impact crater formation on Earth and other planets and the effects of large impacts on the Earth’s environment and ecology. Our understanding of the impact process is far from complete, and despite more than 30 years of intense debate, we are still striving to answer the question as to why this impact was so catastrophic. During International Ocean Discovery Program (IODP) Expedition 364, Paleogene sediments and lithologies that make up the Chicxulub peak ring were cored to investigate (1) the nature and formational mechanism of peak rings, (2) how rocks are weakened during large impacts, (3) the nature and extent of post-impact hydrothermal circulation, (4) the deep biosphere and habitability of the peak ring, and (5) the recovery of life in a sterile zone. Other key targets included sampling the transition through a rare midlatitude section that might include Eocene and Paleocene hyperthermals and/or the Paleocene/Eocene Thermal Maximum (PETM); the composition and character of the impact breccias, melt rocks, and peak-ring rocks; the sedimentology and stratigraphy of the Paleocene–Eocene Chicxulub impact basin infill; the chronology of the peak-ring rocks; and any observations from the core that may help us constrain the volume of dust and climatically active gases released into the stratosphere by this impact. Petrophysical property measurements on the core and wireline logs acquired during Expedition 364 will be used to calibrate geophysical models, including seismic reflection and potential field data, and the integration of all the data will calibrate impact crater models for crater formation and environmental effects. The proposed drilling directly contributes to IODP Science Plan goals: Climate and Ocean Change: How resilient is the ocean to chemical perturbations? The Chicxulub impact represents an external forcing event that caused a 75% level mass extinction. The impact basin may also record key hyperthermals within the Paleogene. Biosphere Frontiers: What are the origin, composition, and global significance of subseafloor communities? What are the limits of life in the subseafloor? How sensitive are ecosystems and biodiversity to environmental change? Impact craters can create habitats for subsurface life, and Chicxulub may provide information on potential habitats for life, including extremophiles, on the early Earth and other planetary bodies. Paleontological and geochemical studies at ground zero will document how large impacts affect ecosystems and effects on biodiversity. Earth Connections/Earth in Motion: What are the composition, structure and dynamics of Earth’s upper mantle? What mechanisms control the occurrence of destructive earthquakes, landslides, and tsunami? Mantle uplift in response to impacts provides insight into dynamics that differ between Earth and other rocky planets. Impacts generate earthquakes, landslides, and tsunami, and scales that generally exceed plate tectonic processes yield insight into effects, the geologic record, and potential hazards. IODP Expedition 364 was a Mission Specific Platform expedition to obtain subseabed samples and downhole logging measurements from the sedimentary cover sequence and peak ring of the Chicxulub impact crater. A single borehole was drilled into the Chicxulub impact crater on the Yucatán continental shelf, recovering core from 505.7 to 1334.73 m below seafloor with ~99% core recovery and acquiring downhole logs for the entire depth. 
    more » « less
  3. Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coin- cides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we docu- ment a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth sys- tem modeling, indicate that a partial ∼50% reduction in global ma- rine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario recon- ciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which ma- rine life imprints its isotopic signal onto the geological record. 
    more » « less
  4. null (Ed.)
    The Chicxulub impact crater in Mexico is unique. It is the only known terrestrial impact structure that has been directly linked to a mass extinction event and the only terrestrial impact with a global ejecta layer. Of the three largest impact structures on Earth, Chicxulub is the best preserved. Chicxulub is also the only known terrestrial impact structure with an intact, unequivocal topographic “peak ring.” Chicxulub’s role in the Cretaceous/Paleogene (K-Pg) mass extinction and its exceptional state of preservation make it an important natural laboratory for the study of both large impact crater formation on Earth and other planets and the effects of large impacts on Earth’s environment and ecology. Our understanding of the impact process is far from complete, and despite more than 30 y of intense debate, we are still striving to answer the question as to why this impact was so catastrophic. International Ocean Discovery Program (IODP) Expedition 364 proposes to core through the peak ring of the Chicxulub impact crater to investigate (1) the nature and formational mechanism of peak rings, (2) how rocks are weakened during large impacts, (3) the nature and extent of postimpact hydrothermal circulation, (4) the deep biosphere and habitability of the peak ring, and (5) the recovery of life in a sterile zone. Of additional interest is the transition through a rare midlatitude record of the Paleocene/Eocene Thermal Maximum (PETM); the composition and character of impact breccias, melt rocks, and peak-ring rocks; the sedimentology and stratigraphy of the Cenozoic sequence; and any observations from the core that would help us constrain the volume of dust and climatically active gases released into the stratosphere by this impact. Petrophysical property measurements on the core and wireline logs will be used to calibrate geophysical models, including seismic reflection data. Proposed drilling directly contributes to the IODP science plan initiatives (1) Deep Biosphere and the Subseafloor Ocean and (2) Environmental Change, Processes and Effects, in particular the environmental and biological perturbations caused by the Chicxulub impact. Expedition 364 will be implemented as a mission-specific platform expedition to obtain subseabed samples and downhole logging measurements from the peak ring of the Chicxulub impact crater. The expedition aims to core a single borehole as deep as 1500 meters below seafloor (mbsf) to recover rock cores from above and into the Chicxulub impact crater preserved under the Yucatán continental shelf. 
    more » « less
  5. An explanation for why some species, such as non-avian dinosaurs, became extinct, whereas others, including mammals, survived the Cretaceous/Paleogene (K/Pg) mass extinction, 66 million years ago (Ma) is still debated. What were the mechanisms behind community restructuring and the emergence of new ecological opportunities after the K/Pg event, selectively driving extinction and survivorship patterns? Using Markov networks, ecological niche partitioning and Earth System models, we reconstructed disruptions in continental food web dynamics, simulating long-term trajectories in ecospace occupancy through the latest Cretaceous (83.6–66.0 Ma) and early Paleogene (66.0–61.6 Ma). This method uses partial correlation networks to represent how different trophic groups interact in a food web and builds on empirical spatial co-variations to explore dependencies between trophic groups. Our analyses are based on a spatiotemporally and taxonomically standardized dataset, comprising more than 1,600 fossil occurrences representing more than 470 genera of fish, salamanders, frogs, albanerpetontids, lizards, snakes, champsosaurs, turtles, crocodylians, dinosaurs (including birds), and mammals across the best sampled region for this interval, the Western Interior of North America. We explicitly tested whether: 1) shifts in food web architecture underwent major restructuring before and after the K/Pg transition, including whether some trophic guilds were more prone to these shifts than others; and 2) any of these changes were associated with fluctuations in the realized niche space, helping to explain survivorship and extinction patterns at the boundary. We find a shift in latest Cretaceous dinosaur faunas, as medium-sized species counterbalanced a loss of large herbivores, but that dinosaur niches were otherwise resilient and static until the K/Pg boundary. Smaller terrestrial vertebrates, including mammals, followed a consistent trajectory of increasing trophic impact and relaxation of ecological niche limits that began in the Cretaceous and continued after the extinction. Patterns of mammalian ecological radiation and niche restructuring indicate that these taxa did not simply proliferate after the extinction; rather, their earlier ecological diversification might have helped them survive the K/Pg event, whereas the static niche of dinosaurs might have contributed to their demise. 
    more » « less