Alongside the Chicxulub meteorite impact, Deccan volcanism is considered a primary trigger for the Cretaceous–Paleogene (K–Pg) mass extinction. Models suggest that volcanic outgassing of carbon and sulfur—potent environmental stressors—drove global temperature change, but the relative timing, duration, and magnitude of such change remains uncertain. Here, we use the organic paleothermometer MBT′5meand the carbon-isotope composition of two K–Pg-spanning lignites from the western Unites States, to test models of volcanogenic air temperature change in the ~100 kyr before the mass extinction. Our records show long-term warming of ~3°C, probably driven by Deccan CO2emissions, and reveal a transient (<10 kyr) ~5°C cooling event, coinciding with the peak of the Poladpur “pulse” of Deccan eruption ~30 kyr before the K–Pg boundary. This cooling was likely caused by the aerosolization of volcanogenic sulfur. Temperatures returned to pre-event values before the mass extinction, suggesting that, from the terrestrial perspective, volcanogenic climate change was not the primary cause of K–Pg extinction. 
                        more » 
                        « less   
                    
                            
                            Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact
                        
                    
    
            Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coin- cides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we docu- ment a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth sys- tem modeling, indicate that a partial ∼50% reduction in global ma- rine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario recon- ciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which ma- rine life imprints its isotopic signal onto the geological record. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1924807
- PAR ID:
- 10172047
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences of the United States of America
- Volume:
- 116
- Issue:
- 45
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 22500 - 22504
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth’s History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K–Pg the most comparable past event to today’s projected “sixth” mass extinction. The extinction famously eliminated major clades of animals and plankton. However, for land plants, losses primarily occurred among species observed in regional studies but left no global trace at the family or major-clade level, leading to questions about whether there was a significant K–Pg plant extinction. We review emerging paleobotanical data from the Americas and argue that the evidence strongly favors profound (generally >50%), geographically heterogeneous species losses and recovery consistent with mass extinction. The heterogeneity appears to reflect several factors, including distance from the impact site and marine and latitudinal buffering of the impact winter. The ensuing transformations have affected all land life, including true angiosperm dominance in the world’s forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations leading to many crown angiosperm clades. Although the worst outcomes are still preventable, the sixth mass extinction could mirror the K–Pg event by eliminating comparable numbers of plant species in a geologic instant, impoverishing and eventually transforming terrestrial ecosystems while having little effect on global plant-family diversity.more » « less
- 
            Previous ichnological analysis at the Chicxulub impact crater, Yucatán Peninsula, México (International Ocean Discovery Program [IODP]/International Continental Scientific Drilling Program [ICDP] Site M0077), showed a surprisingly rapid initial tracemaker community recovery after the end-Cretaceous (Cretaceous-Paleogene [K-Pg]) mass extinction event. Here, we found that full recovery was also rapid, with the establishment of a well-developed tiered community within ~700 k.y. Several stages of recovery were observed, with distinct phases of stabilization and diversification, ending in the development of a trace fossil assemblage mainly consisting of abundant Zoophycos, Chondrites, and Planolites, assigned to the Zoophycos ichnofacies. The increase in diversity is associated with higher abundance, larger forms, and a deeper and more complex tiering structure. Such rapid recovery suggests that favorable paleoenvironmental conditions were quickly reestablished within the impact basin, enabling colonization of the substrate. Comparison with the end-Permian extinction reveals similarities during recovery, yet postextinction recovery was significantly faster after the K-Pg event. The rapid recovery has significant implications for the evolution of macrobenthic biota after the K-Pg event. Our results have relevance in understanding how communities recovered after the K-Pg impact and how this event differed from other mass extinction events.more » « less
- 
            An asteroid impact in the Yucatán Peninsula set off a sequence of events that led to the Cretaceous–Paleogene (K–Pg) mass extinction of 76% species, including the nonavian dinosaurs. The impact hit a carbonate platform and released sulfate aerosols and dust into Earth’s upper atmosphere, which cooled and darkened the planet—a scenario known as an impact winter. Organic burn markers are observed in K–Pg boundary records globally, but their source is debated. If some were derived from sedimentary carbon, and not solely wildfires, it implies soot from the target rock also contributed to the impact winter. Characteristics of polycyclic aromatic hydrocarbons (PAHs) in the Chicxulub crater sediments and at two deep ocean sites indicate a fossil carbon source that experienced rapid heating, consistent with organic matter ejected during the formation of the crater. Furthermore, PAH size distributions proximal and distal to the crater indicate the ejected carbon was dispersed globally by atmospheric processes. Molecular and charcoal evidence indicates wildfires were also present but more delayed and protracted and likely played a less acute role in biotic extinctions than previously suggested. Based on stratigraphy near the crater, between 7.5 × 1014and 2.5 × 1015g of black carbon was released from the target and ejected into the atmosphere, where it circulated the globe within a few hours. This carbon, together with sulfate aerosols and dust, initiated an impact winter and global darkening that curtailed photosynthesis and is widely considered to have caused the K–Pg mass extinction.more » « less
- 
            Abstract The Cretaceous-Paleogene (K-Pg; 66 Ma) mass extinction was caused by a bolide impact on the Yucatán platform near modern Chicxulub, Mexico. Calcareous nannoplankton, a dominant group of primary producers, were almost eradicated at this time. Post-impact nannoplankton assemblages from Northern Hemisphere sites were characterized by a short-lived series of high-dominance, low-diversity acmes (“boom-bust” successions), which likely represent an unstable post-impact environment. Although these boom-bust successions are a global signal, the mechanisms that controlled the taxonomic switchovers between acmes are currently unknown. Here, we present detailed analyses of calcareous nannoplankton and planktic foraminiferal assemblages in a new K-Pg section from the peak ring of the Chicxulub crater. We show that although nannoplankton assemblages resemble the typical series of acmes at Tethyan sites, the termination of the “disaster” acme in the crater is delayed by at least 500 k.y. The coincidence between shifts in the dominant planktic foraminiferal trophic group and switchovers in nannoplankton boom-bust taxa suggests that this series of acmes may represent a gradual trend toward oligotrophy driven by the global restoration of biological pump efficiency. Thus, the global diachroneity of boom-bust successions likely reflects the differential pacing of biological pump restoration between oceanic basins and settings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    