Universal Conceptual Cognitive Annotation (UCCA; Abend and Rappoport, 2013) is a typologically-informed, broad-coverage semantic annotation scheme that describes coarse-grained predicate-argument structure but currently lacks semantic roles. We argue that lexicon-free annotation of the semantic roles marked by prepositions, as formulated by Schneider et al. (2018), is complementary and suitable for integration within UCCA. We show empirically for English that the schemes, though annotated independently, are compatible and can be combined in a single semantic graph. A comparison of several approaches to parsing the integrated representation lays the groundwork for future research on this task.
more »
« less
Semantically Constrained Multilayer Annotation: The Case of Coreference
We propose a coreference annotation scheme as a layer on top of the Universal Conceptual Cognitive Annotation foundational layer, treating units in predicate-argument structure as a basis for entity and event mentions. We argue that this allows coreference annotators to sidestep some of the challenges faced in other schemes, which do not enforce consistency with predicate-argument structure and vary widely in what kinds of mentions they annotate and how. The proposed approach is examined with a pilot annotation study and compared with annotations from other schemes.
more »
« less
- Award ID(s):
- 1812778
- PAR ID:
- 10190626
- Date Published:
- Journal Name:
- Proceedings of the First International Workshop on Designing Meaning Representations
- Page Range / eLocation ID:
- 164 to 176
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bonial, Claire; Bonn, Julia; Hwang, Jena D (Ed.)For many years, there has been attempts to compare predicate-argument labeling schemas between formalism, typically under the dependency assumptions (even if the annotation by these schemas could have been performed on either constituent-based specifications or dependency ones). Given the growing number of resources that link various lexical resources to one another, as well as thanks to parallel annotated corpora (with or without annotation), it is now possible to do more in-depth studies of those correspondences. We present here a high-coverage pilot study of mapping the labeling system used in PropBank (for English) to Czech, which has so far used mainly valency lexicons (in several closely related forms) for annotation projects, under a different level of specification and different theoretical assumptions. The purpose of this study is both theoretical (comparing the argument labeling schemes) and practical (to be able to annotate Czech under the standard UMR specifications).more » « less
-
Coreference decisions among event mentions and among co-occurring entity mentions are highly interdependent, thus motivating joint inference. Capturing the uncertainty over each variable can be crucial for inference among multiple dependent variables. Previous work on joint coreference employs heuristic approaches, lacking well-defined objectives, and lacking modeling of uncertainty on each side of the joint problem. We present a new approach of joint coreference, including (1) a formal cost function inspired by Dasgupta’s cost for hierarchical clustering, and (2) a representation for uncertainty of clustering of event and entity mentions, again based on a hierarchical structure. We describe an alternating optimization method for inference that when clustering event mentions, considers the uncertainty of the clustering of entity mentions and vice-versa. We show that our proposed joint model provides empirical advantages over state-of-the-art independent and joint models.more » « less
-
Cross-Document Event Coreference (CDEC) annotation is challenging and difficult to scale, resulting in existing datasets being small and lacking diversity. We introduce a new approach leveraging large language models (LLMs) to decontextualize event mentions, by simplifying the document-level annotation task to sentence pairs with enriched context, enabling the creation of Richer EventCorefBank (RECB), a denser and more expressive dataset annotated at faster speed. Decontextualization has been shown to improve annotation speed without compromising quality and to enhance model performance. Our baseline experiment indicates that systems trained on RECB achieve comparable results on the EventCorefBank(ECB+) test set, showing the high quality of our dataset and its generalizability on other CDEC datasets. In addition, our evaluation shows that the strong baseline models are still struggling with RECB comparing to other CDEC datasets, suggesting that the richness and diversity of RECB present significant challenges to current CDEC systems.more » « less
-
null (Ed.)Event extraction has long been treated as a sentence-level task in the IE community. We argue that this setting does not match human information seeking behavior and leads to incomplete and uninformative extraction results. We propose a document-level neural event argument extraction model by formulating the task as conditional generation following event templates. We also compile a new document-level event extraction benchmark dataset WIKIEVENTS which includes complete event and coreference annotation. On the task of argument extraction, we achieve an absolute gain of 7.6% F1 and 5.7% F1 over the next best model on the RAMS and WIKIEVENTS datasets respectively. On the more challenging task of informative argument extraction, which requires implicit coreference reasoning, we achieve a 9.3% F1 gain over the best baseline. To demonstrate the portability of our model, we also create the first end-to-end zero-shot event extraction framework and achieve 97% of fully supervised model’s trigger extraction performance and 82% of the argument extraction performance given only access to 10 out of the 33 types on ACE.more » « less