skip to main content


Title: Meta Learning with Relational Information for Short Sequences
This paper proposes a new meta-learning method – named HARMLESS (HAwkes Relational Meta LEarning method for Short Sequences) for learning heterogeneous point process models from short event sequence data along with a relational network. Specifically, we propose a hierarchical Bayesian mixture Hawkes process model, which naturally incorporates the relational information among sequences into point process modeling. Compared with existing methods, our model can capture the underlying mixed-community patterns of the relational network, which simultaneously encourages knowledge sharing among sequences and facilitates adaptive learning for each individual sequence. We further propose an efficient stochastic variational meta expectation maximization algorithm that can scale to large problems. Numerical experiments on both synthetic and real data show that HARMLESS outperforms existing methods in terms of predicting the future events.  more » « less
Award ID(s):
1745382
NSF-PAR ID:
10190671
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a new meta-learning method – named HARMLESS (HAwkes Relational Meta LEarning method for Short Sequences) for learning heterogeneous point process models from short event sequence data along with a relational net- work. Specifically, we propose a hierarchical Bayesian mixture Hawkes process model, which naturally incorporates the relational information among sequences into point process modeling. Compared with existing methods, our model can capture the underlying mixed-community patterns of the relational network, which simultaneously encourages knowledge sharing among sequences and facilitates adaptive learning for each individual sequence. We further propose an efficient stochastic variational meta expectation maximization algorithm that can scale to large problems. Numerical experiments on both synthetic and real data show that HARMLESS outperforms existing methods in terms of predicting the future events. 
    more » « less
  2. Modern data acquisition routinely produce massive amounts of event sequence data in various domains, such as social media, healthcare, and financial markets. These data often ex- hibit complicated short-term and long-term temporal dependencies. However, most of the ex- isting recurrent neural network-based point process models fail to capture such dependencies, and yield unreliable prediction performance. To address this issue, we propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long- term dependencies and meanwhile enjoys computational efficiency. Numerical experiments on various datasets show that THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin. Moreover, THP is quite general and can incorpo- rate additional structural knowledge. We provide a concrete example, where THP achieves im- proved prediction performance for learning multiple point processes when incorporating their relational information. 
    more » « less
  3. How to cluster event sequences generated via different point processes is an interesting and important problem in statistical machine learning. To solve this problem, we propose and discuss an effective model-based clustering method based on a novel Dirichlet mixture model of a special but significant type of point processes — Hawkes process. The proposed model generates the event sequences with different clusters from the Hawkes processes with different parameters, and uses a Dirichlet distribution as the prior distribution of the clusters. We prove the identifiability of our mixture model and propose an effective variational Bayesian inference algorithm to learn our model. An adaptive inner iteration allocation strategy is designed to accelerate the convergence of our algorithm. Moreover, we investigate the sample complexity and the computational complexity of our learning algorithm in depth. Experiments on both synthetic and real-world data show that the clustering method based on our model can learn structural triggering patterns hidden in asynchronous event sequences robustly and achieve superior performance on clustering purity and consistency compared to existing methods. 
    more » « less
  4. Large quantities of asynchronous event sequence data such as crime records, emergence call logs, and financial transactions are becoming increasingly available from various fields. These event sequences often exhibit both long-term and short-term temporal dependencies. Variations of neural network based temporal point processes have been widely used for modeling such asynchronous event sequences. However, many current architectures including attention based point processes struggle with long event sequences due to computational inefficiency. To tackle the challenge, we propose an efficient sparse transformer Hawkes process (STHP), which has two components. For the first component, a transformer with a novel temporal sparse self-attention mechanism is applied to event sequences with arbitrary intervals, mainly focusing on short-term dependencies. For the second component, a transformer is applied to the time series of aggregated event counts, primarily targeting the extraction of long-term periodic dependencies. Both components complement each other and are fused together to model the conditional intensity function of a point process for future event forecasting. Experiments on real-world datasets show that the proposed STHP outperforms baselines and achieves significant improvement in computational efficiency without sacrificing prediction performance for long sequences. 
    more » « less
  5. Large quantities of asynchronous event sequence data such as crime records, emergence call logs, and financial transactions are becoming increasingly available from various fields. These event sequences often exhibit both long-term and short-term temporal dependencies. Variations of neural network based temporal point processes have been widely used for modeling such asynchronous event sequences. However, many current architectures including attention based point processes struggle with long event sequences due to computational inefficiency. To tackle the challenge, we propose an efficient sparse transformer Hawkes process (STHP), which has two components. For the first component, a transformer with a novel temporal sparse self-attention mechanism is applied to event sequences with arbitrary intervals, mainly focusing on short-term dependencies. For the second component, a transformer is applied to the time series of aggregated event counts, primarily targeting the extraction of long-term periodic dependencies. Both components complement each other and are fused together to model the conditional intensity function of a point process for future event forecasting. Experiments on real-world datasets show that the proposed STHP outperforms baselines and achieves significant improvement in computational efficiency without sacrificing prediction performance for long sequences. 
    more » « less