skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Learning Conditional Generative Models for Temporal Point Processes
Estimating the future event sequence conditioned on current observations is a long-standing and challenging task in temporal analysis. On one hand for many real-world problems the underlying dynamics can be very complex and often unknown. This renders the traditional parametric point process models often fail to fit the data for their limited capacity. On the other hand, long-term prediction suffers from the problem of bias exposure where the error accumulates and propagates to future prediction. Our new model builds upon the sequence to sequence (seq2seq) prediction network. Compared with parametric point process models, its modeling capacity is higher and has better flexibility for fitting real-world data. The main novelty of the paper is to mitigate the second challenge by introducing the likelihood-free loss based on Wasserstein distance between point processes, besides negative maximum likelihood loss used in the traditional seq2seq model. Wasserstein distance, unlike KL divergence i.e. MLE loss, is sensitive to the underlying geometry between samples and can robustly enforce close geometry structure between them. This technique is proven able to improve the vanilla seq2seq model by a notable margin on various tasks.  more » « less
Award ID(s):
1745382
NSF-PAR ID:
10190672
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Point processes are becoming very popular in modeling asynchronous sequential data due to their sound mathematical foundation and strength in modeling a variety of real-world phenomena. Currently, they are often characterized via intensity function which limits model’s expressiveness due to unrealistic assumptions on its parametric form used in practice. Furthermore, they are learned via maximum likelihood approach which is prone to failure in multi-modal distributions of sequences. In this paper, we propose an intensity-free approach for point processes modeling that transforms nuisance processes to a target one. Furthermore, we train the model using a likelihood-free leveraging Wasserstein distance between point processes. Experiments on various synthetic and real-world data substantiate the superiority of the proposed point process model over conventional ones. 
    more » « less
  2. A parametric point process model is developed, with modeling based on the assumption that sequential observations often share latent phenomena, while also possessing idiosyncratic effects. An alternating optimization method is proposed to learn a “registered” point process that accounts for shared structure, as well as “warping” functions that characterize idiosyncratic aspects of each observed sequence. Under reasonable constraints, in each iteration we update the sample-specific warping functions by solving a set of constrained nonlinear programming problems in parallel, and update the model by maximum likelihood estimation. The justifiability, complexity and robustness of the proposed method are investigated in detail, and the influence of sequence stitching on the learning results is discussed empirically. Experiments on both synthetic and real-world data demonstrate that the method yields explainable point process models, achieving encouraging results compared to state-of-the-art methods. 
    more » « less
  3. Abstract

    With the wide deployment of rechargeable batteries, battery degradation prediction has emerged as a challenging issue. However, battery life defined by capacity loss provides limited information regarding battery degradation. In this article, we explore the prediction of voltage‐capacity curves over battery lifetime based on a sequence to sequence (seq2seq) model. We demonstrate that the data of one present voltage‐capacity curve can be used as the input of the seq2seq model to accurately predict the voltage‐capacity curves at 100, 200, and 300 cycles ahead. This offers an opportunity to update battery management strategies in response to the predicted consequences. Besides, the model avoids feature engineering and is flexible to incorporate different numbers of input and output cycles. Therefore, it can be easily transplanted to other battery systems or electrochemical components. Furthermore, the model features data generation, that is, we can use the data of only one cycle to generate a large spectrum of aging data at the future cycles for developing other battery diagnosis or prognosis methods. In this way, the time and energy consuming battery degradation tests can be sharply reduced.image

     
    more » « less
  4. Abstract Objective

    We aim to develop a hybrid model for earlier and more accurate predictions for the number of infected cases in pandemics by (1) using patients’ claims data from different counties and states that capture local disease status and medical resource utilization; (2) utilizing demographic similarity and geographical proximity between locations; and (3) integrating pandemic transmission dynamics into a deep learning model.

    Materials and Methods

    We proposed a spatio-temporal attention network (STAN) for pandemic prediction. It uses a graph attention network to capture spatio-temporal trends of disease dynamics and to predict the number of cases for a fixed number of days into the future. We also designed a dynamics-based loss term for enhancing long-term predictions. STAN was tested using both real-world patient claims data and COVID-19 statistics over time across US counties.

    Results

    STAN outperforms traditional epidemiological models such as susceptible-infectious-recovered (SIR), susceptible-exposed-infectious-recovered (SEIR), and deep learning models on both long-term and short-term predictions, achieving up to 87% reduction in mean squared error compared to the best baseline prediction model.

    Conclusions

    By combining information from real-world claims data and disease case counts data, STAN can better predict disease status and medical resource utilization.

     
    more » « less
  5. In recent times, sequence-to-sequence (seq2seq) models have gained a lot of popularity and provide stateof-the-art performance in a wide variety of tasks, such as machine translation, headline generation, text summarization, speech-to-text conversion, and image caption generation. The underlying framework for all these models is usually a deep neural network comprising an encoder and a decoder. Although simple encoder–decoder models produce competitive results, many researchers have proposed additional improvements over these seq2seq models, e.g., using an attention-based model over the input, pointer-generation models, and self-attention models. However, such seq2seq models suffer from two common problems: 1) exposure bias and 2) inconsistency between train/test measurement. Recently, a completely novel point of view has emerged in addressing these two problems in seq2seq models, leveraging methods from reinforcement learning (RL). In this survey, we consider seq2seq problems from the RL point of view and provide a formulation combining the power of RL methods in decision-making with seq2seq models that enable remembering long-term memories. We present some of the most recent frameworks that combine the concepts from RL and deep neural networks. Our work aims to provide insights into some of the problems that inherently arise with current approaches and how we can address them with better RL models. We also provide the source code for implementing most of the RL models discussed in this paper to support the complex task of abstractive text summarization and provide some targeted experiments for these RL models, both in terms of performance and training time. 
    more » « less