skip to main content

Title: Speciation despite gene flow in two owls (Aegolius ssp.): Evidence from 2,517 ultraconserved element loci
Abstract New study systems and tools are needed to understand how divergence and speciation occur between lineages with gene flow. Migratory birds often exhibit divergence despite seasonal migration, which brings populations into contact with one another. We studied divergence between 2 subspecies of Northern Saw-whet Owl (Aegolius acadicus), in which a sedentary population on the islands of Haida Gwaii, British Columbia (A. a. brooksi), exists in the presence of the other form (A. a. acadicus) during migration but not during the breeding season. Prior research showed fixed mtDNA divergence but left open the question of nuclear gene flow. We used 2,517 ultraconserved element loci to examine the demographic history of this young taxon pair. Although we did not observe fixed single nucleotide polymorphism differences between populations among our genotyped individuals, 100% of the birds were diagnosable and δaδI analyses suggested the demographic model best fitting the data was one of split-bidirectional-migration (i.e. speciation with gene flow). We dated the split between brooksi and acadicus to ~278 Kya, and our analyses suggested gene flow between groups was skewed, with ~0.7 individuals per generation coming from acadicus into brooksi and ~4.4 going the opposite direction. Coupled with an absence of evidence of more » phenotypic hybrids and the birds’ natural history, these data suggest brooksi may be a young biological species arising despite historic gene flow. « less
Authors:
; ; ; ;
Award ID(s):
1759906
Publication Date:
NSF-PAR ID:
10190676
Journal Name:
The Auk
Volume:
136
Issue:
2
ISSN:
0004-8038
Sponsoring Org:
National Science Foundation
More Like this
  1. Smith, Stephen (Ed.)
    Abstract Understanding how gene flow affects population divergence and speciation remains challenging. Differentiating one evolutionary process from another can be difficult because multiple processes can produce similar patterns, and more than one process can occur simultaneously. Although simple population models produce predictable results, how these processes balance in taxa with patchy distributions and complicated natural histories is less certain. These types of populations might be highly connected through migration (gene flow), but can experience stronger effects of genetic drift and inbreeding, or localized selection. Although different signals can be difficult to separate, the application of high-throughput sequence data can provide the resolution necessary to distinguish many of these processes. We present whole-genome sequence data for an avian species group with an alpine and arctic tundra distribution to examine the role that different population genetic processes have played in their evolutionary history. Rosy-finches inhabit high elevation mountaintop sky islands and high-latitude island and continental tundra. They exhibit extensive plumage variation coupled with low levels of genetic variation. Additionally, the number of species within the complex is debated, making them excellent for studying the forces involved in the process of diversification, as well as an important species group in which to investigatemore »species boundaries. Total genomic variation suggests a broadly continuous pattern of allele frequency changes across the mainland taxa of this group in North America. However, phylogenomic analyses recover multiple distinct, well supported, groups that coincide with previously described morphological variation and current species-level taxonomy. Tests of introgression using D-statistics and approximate Bayesian computation reveal significant levels of introgression between multiple North American taxa. These results provide insight into the balance between divergent and homogenizing population genetic processes and highlight remaining challenges in interpreting conflict between different types of analytical approaches with whole-genome sequence data. [ABBA-BABA; approximate Bayesian computation; gene flow; phylogenomics; speciation; whole-genome sequencing.]« less
  2. Baldauf, Sandra (Ed.)
    Abstract The southwestern and central United States serve as an ideal region to test alternative hypotheses regarding biotic diversification. Genomic data can now be combined with sophisticated computational models to quantify the impacts of paleoclimate change, geographic features, and habitat heterogeneity on spatial patterns of genetic diversity. In this study, we combine thousands of genotyping-by-sequencing (GBS) loci with mtDNA sequences (ND1) from the Texas horned lizard (Phrynosoma cornutum) to quantify relative support for different catalysts of diversification. Phylogenetic and clustering analyses of the GBS data indicate support for at least three primary populations. The spatial distribution of populations appears concordant with habitat type, with desert populations in AZ and NM showing the largest genetic divergence from the remaining populations. The mtDNA data also support a divergent desert population, but other relationships differ and suggest mtDNA introgression. Genotype–environment association with bioclimatic variables supports divergence along precipitation gradients more than along temperature gradients. Demographic analyses support a complex history, with introgression and gene flow playing an important role during diversification. Bayesian multispecies coalescent analyses with introgression (MSci) analyses also suggest that gene flow occurred between populations. Paleo-species distribution models support two southern refugia that geographically correspond to contemporary lineages. We find thatmore »divergence times are underestimated and population sizes are overestimated when introgression occurred and is ignored in coalescent analyses, and furthermore, inference of ancient introgression events and demographic history is sensitive to inclusion of a single recently admixed sample. Our analyses cannot refute the riverine barrier or glacial refugia hypotheses. Results also suggest that populations are continuing to diverge along habitat gradients. Finally, the strong evidence of admixture, gene flow, and mtDNA introgression among populations suggests that P. cornutum should be considered a single widespread species under the General Lineage Species Concept.« less
  3. The North American tiger salamander species complex, including its best-known species, the Mexican axolotl, has long been a source of biological fascination. The complex exhibits a wide range of variation in developmental life history strategies, including populations and individuals that undergo metamorphosis; those able to forego metamorphosis and retain a larval, aquatic lifestyle (i.e., paedomorphosis); and those that do both. The evolution of a paedomorphic life history state is thought to lead to increased population genetic differentiation and ultimately reproductive isolation and speciation, but the degree to which it has shaped population- and species-level divergence is poorly understood. Using a large multilocus dataset from hundreds of samples across North America, we identified genetic clusters across the geographic range of the tiger salamander complex. These clusters often contain a mixture of paedomorphic and metamorphic taxa, indicating that geographic isolation has played a larger role in lineage divergence than paedomorphosis in this system. This conclusion is bolstered by geography-informed analyses indicating no effect of life history strategy on population genetic differentiation and by model-based population genetic analyses demonstrating gene flow between adjacent metamorphic and paedomorphic populations. This fine-scale genetic perspective on life history variation establishes a framework for understanding how plasticity, localmore »adaptation, and gene flow contribute to lineage divergence. Many members of the tiger salamander complex are endangered, and the Mexican axolotl is an important model system in regenerative and biomedical research. Our results chart a course for more informed use of these taxa in experimental, ecological, and conservation research.

    « less
  4. By shaping meiotic recombination, chromosomal inversions can influence genetic exchange between hybridizing species. Despite the recognized importance of inversions in evolutionary processes such as divergence and speciation, teasing apart the effects of inversions over time remains challenging. For example, are their effects on sequence divergence primarily generated through creating blocks of linkage-disequilibrium pre-speciation or through preventing gene flux after speciation? We provide a comprehensive look into the influence of inversions on gene flow throughout the evolutionary history of a classic system: Drosophila pseudoobscura and D. persimilis. We use extensive whole-genome sequence data to report patterns of introgression and divergence with respect to chromosomal arrangements. Overall, we find evidence that inversions have contributed to divergence patterns between Drosophila pseudoobscura and D. persimilis over three distinct timescales: 1) segregation of ancestral polymorphism early in the speciation process, 2) gene flow after the split of D. pseudoobscura and D. persimilis, but prior to the split of D. pseudoobscura subspecies, and 3) recent gene flow between sympatric D. pseudoobscura and D. persimilis, after the split of D. pseudoobscura subspecies. We discuss these results in terms of our understanding of evolution in this classic system and provide cautions for interpreting divergence measures in other systems.
  5. Identifying the evolutionary and ecological mechanisms that drive lineage diversification in the species-rich tropics is of broad interest to evolutionary biologists. Here, we use phylogeographic and demographic analyses of genomic scale RADseq data to assess the impact of a large geographic feature, the Amazon River, on lineage formation in a venomous pitviper, Bothrops atrox. We compared genetic differentiation in samples from four sites near Santarem, Brazil that spanned the Amazon and represented major habitat types. A species delimitation analysis identified each population as a distinct evolutionary lineage while a species tree analysis with populations as taxa revealed a phylogenetic tree consistent with dispersal across the Amazon from north to south. Phylogenetic analyses of mtDNA variation confirmed this pattern and suggest that all lineages originated during the mid- to late-Pleistocene. Historical demographic analyses support a population model of lineage formation through isolation between lineages with low ongoing migration between large populations and reject a model of differentiation through isolation by distance alone. Our results provide a rare example of a phylogeographic pattern demonstrating dispersal over evolutionary time scales across a large tropical river and suggest a role for the Amazon River as a driver of in-situ divergence by both impeding (butmore »not preventing) gene flow and through parapatric differentiation along an ecological gradient.« less