skip to main content


Title: Phylogeography, hybridization, and species discovery in the Etheostoma nigrum complex (Percidae: Etheostoma: Boleosoma)
The history of riverine fish diversification is largely a product of geographic isolation. Physical barriers that reduce or eliminate gene flow between populations facilitate divergence via genetic drift and natural selection, eventually leading to speciation. For freshwater organisms, diversification is often the product of drainage basin rearrangements. In young clades where the history of isolation is the most recent, evolutionary relationships can resemble a tangled web. One especially recalcitrant group of freshwater fishes is the Johnny Darter (Etheostoma nigrum) species complex, where traditional taxonomy and molecular phylogenetics indicate a history of gene flow and conflicting inferences of species diversity. Here we assemble a genomic dataset using double digest restriction site associated DNA (ddRAD) sequencing and use phylogenomic and population genetic approaches to investigate the evolutionary history of the complex of species that includes E. nigrum, E. olmstedi, E. perlongum, and E. susanae. We reveal and validate several evolutionary lineages that we delimit as species, highlighting the need for additional work to formally describe the diversity of the Etheostoma nigrum complex. Our analyses also identify gene flow among recently diverged lineages, including one instance involving E. susanae, a localized and endangered species. Phylogeographic structure within the Etheostoma nigrum species complex coincides with major geologic events, such as parallel divergence in river basins during Pliocene inundation of the Atlantic coastal plain and multiple northward post-glacial colonization routes tracking river basin rearrangements. Our study serves as a nuanced example of how low dispersal rates coupled with geographic isolation among disconnected river systems in eastern North America has produced one of the world’s freshwater biodiversity hotspots.  more » « less
Award ID(s):
2109761
NSF-PAR ID:
10495322
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Molecular Phylogenetics and Evolution
Volume:
178
Issue:
C
ISSN:
1055-7903
Page Range / eLocation ID:
107645
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Geographic isolation is the primary driver of speciation in many vertebrate lineages. This trend is exemplified by North American darters, a clade of freshwater fishes where nearly all sister species pairs are allopatric and separated by millions of years of divergence. One of the only exceptions is the Lake Waccamaw endemic Etheostoma perlongum and its riverine sister species Etheostoma maculaticeps, which have no physical barriers to gene flow. Here we show that lacustrine speciation of E. perlongum is characterized by morphological and ecological divergence likely facilitated by a large chromosomal inversion. While E. perlongum is phylogenetically nested within the geographically widespread E. maculaticeps, there is a sharp genetic and morphological break coinciding with the lake–river boundary in the Waccamaw River system. Despite recent divergence, an active hybrid zone, and ongoing gene flow, analyses using a de novo reference genome reveal a 9 Mb chromosomal inversion with elevated divergence between E. perlongum and E. maculaticeps. This region exhibits striking synteny with known inversion supergenes in two distantly related fish lineages, suggesting deep evolutionary convergence of genomic architecture. Our results illustrate that rapid, ecological speciation with gene flow is possible even in lineages where geographic isolation is the dominant mechanism of speciation.

     
    more » « less
  2. Abstract

    The paleback darter,Etheostoma pallididorsum, is considered imperilled and has recently been petitioned for listing under the Endangered Species Act. Previous allozyme‐based studies found evidence of a small effective population size, warranting conservation concern. The objective of this study was to assess the population dynamics and the phylogeographical history of the paleback darter, using a multilocus microsatellite approach and mitochondrial DNA.

    The predictions of this study were that: paleback darter populations will exhibit low genetic diversity and minimal gene flow; population structure will correspond to the river systems from which the samples are derived; reservoir dams impounding the reaches between the Caddo and Ouachita rivers would serve as effective barriers to gene flow; and the Caddo and Ouachita rivers are reciprocally monophyletic.

    Microsatellite DNA loci revealed significant structure among sampled localities (globalFst= 0.17,P< 0.001), with evidence of two distinct populations representing the Caddo and Ouachita rivers. However, Bayesian phylogeographical analyses resulted in three distinct clades: Caddo River, Ouachita River, and Mazarn Creek. Divergence from the most recent ancestor shared among the river drainages was estimated at 60 Kya. Population genetic diversity was relatively low (He= 0.65; mean alleles per locus,A= 6.26), but was comparable with the population genetic diversity found in the close relatives slackwater darter,Etheostoma boschungi(He= 0.65;A= 6.74), and Tuscumbia darter,Etheostoma tuscumbia(He= 0.57;A= 5.53).

    These results have conservation implications for paleback darter populations and can be informative for other headwater specialist species. Like other headwater species with population structuring and relatively low genetic diversity, the persistence of paleback darter populations is likely to be tied to the persistence and connectivity of local breeding and non‐breeding habitat. These results do not raise conservation concern for a population decline; however, the restricted distribution and endemic status of the species still renders paleback darter populations vulnerable to extirpation or extinction.

     
    more » « less
  3. Abstract

    The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide (WCD), and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (Sceloporus zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The WCD is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.

     
    more » « less
  4. Abstract Aim

    To investigate the cryptic diversity and diversification timing in the putatively low‐dispersal Amazonian leaf‐litter lizardLoxopholis osvaldoi, and to ask how geography (rivers, isolation by distance, IBD), ecological drivers (isolation by environment, IBE) and historical factors (climatic refugia) explain intraspecific genetic variation.

    Location

    Central Amazonia, Brazil.

    Taxon

    Squamata; Gymnophthalmidae;Loxopholis osvaldoi.

    Methods

    We sequenced two mitochondrial and two nuclear markers in 157 individuals. Phylogeographic structure and the occurrence of independent evolving lineages where explored through phylogenetic and coalescent analyses. A species tree and divergence dates of lineages were inferred with *BEAST, employing multiple DNA substitution rates. The potential genetic impacts of geographical distance among localities, the environment and the position of localities in relation to main rivers were tested by redundancy analysis (RDA).

    Results

    We detected 11 independently evolving and largely divergent intraspecific lineages. Lineage distribution patterns are complex and do not match any conspicuous barrier to gene flow, except for the Amazon River. Most lineages appear to have originated in the lower Miocene and Pliocene, in disagreement with the Pleistocene refuge hypothesis. IBD, IBE and rivers appear to have acted in concert establishing and maintaining genetic structure. However, when controlling for other explanatory variables, IBD explains significantly more variation than rivers, IBE or historical factors.

    Main Conclusions

    Our results strongly suggest thatL.osvaldoiis a species complex. Future taxonomic work should use an integrative approach to explore whether morphological variation is present and congruent with the genetic data. While the use of a sensitive dating analysis allowed us to better describe the diversification history ofL.osvaldoi, the lack of a spatial model of Neogene river dynamics prevents the test of specific, more informative river barrier hypotheses. The data suggest that nonlinear correlation analyses (e.g. RDA) should be preferred to detect factors that affect phylogeographic patterns in the Amazon, instead of linear multiple regressions (e.g. Mantel tests). Given the high level of cryptic diversity detected within this and other Amazonian species, we caution against hypothesis tests based solely on the distribution of nominal taxa, which can provide a rather incomplete view of the processes behind Amazonian diversity.

     
    more » « less
  5. Abstract

    The reuse of old genetic variation can promote rapid diversification in evolutionary radiations, but in most cases, the historical events underlying this divergence are not known. For example, ancient hybridization can generate new combinations of alleles that sort into descendant lineages, potentially providing the raw material to initiate divergence. In the Mimulus aurantiacus species complex, there is evidence for widespread gene flow among members of this radiation. In addition, allelic variation in the MaMyb2 gene is responsible for differences in flower color between the closely related ecotypes of subspecies puniceus, contributing to reproductive isolation by pollinators. Previous work suggested that MaMyb2 was introgressed into the red-flowered ecotype of puniceus. However, additional taxa within the radiation have independently evolved red flowers from their yellow-flowered ancestors, raising the possibility that this introgression had a more ancient origin. In this study, we used repeated tests of admixture from whole-genome sequence data across this diverse radiation to demonstrate that there has been both ancient and recurrent hybridization in this group. However, most of the signal of this ancient introgression has been removed due to selection, suggesting that widespread barriers to gene flow are in place between taxa. Yet, a roughly 30 kb region that contains the MaMyb2 gene is currently shared only among the red-flowered taxa. Patterns of admixture, sequence divergence, and extended haplotype homozygosity across this region confirm a history of ancient hybridization, where functional variants have been preserved due to positive selection in red-flowered taxa but lost in their yellow-flowered counterparts. The results of this study reveal that selection against gene flow can reduce genomic signatures of ancient hybridization, but that historical introgression can provide essential genetic variation that facilitates the repeated evolution of phenotypic traits between lineages.

     
    more » « less