skip to main content


Title: Dynamics of Large Scale Turbulence in Finite-Sized Wind Farm Canopy Using Proper Orthogonal Decomposition and a Novel Fourier-POD Framework
Large scale coherent structures in the atmospheric boundary layer (ABL) are known to contribute to the power generation in wind farms. In order to understand the dynamics of large scale structures, we perform proper orthogonal decomposition (POD) analysis of a finite sized wind turbine array canopy in the current paper. The POD analysis sheds light on the dynamics of large scale coherent modes as well as on the scaling of the eigenspectra in the heterogeneous wind farm. We also propose adapting a novel Fourier-POD (FPOD) modal decomposition which performs POD analysis of spanwise Fourier-transformed velocity. The FPOD methodology helps us in decoupling the length scales in the spanwise and streamwise direction when studying the 3D energetic coherent modes. Additionally, the FPOD eigenspectra also provide deeper insights for understanding the scaling trends of the three-dimensional POD eigenspectra and its convergence, which is inherently tied to turbulent dynamics. Understanding the behaviour of large scale structures in wind farm flows would not only help better assess reduced order models (ROM) for forecasting the flow and power generation but would also play a vital role in improving the decision making abilities in wind farm optimization algorithms in future. Additionally, this study also provides guidance for better understanding of the POD analysis in the turbulence and wind farm community.  more » « less
Award ID(s):
1707075 1335868
NSF-PAR ID:
10190772
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Energies
Volume:
13
Issue:
7
ISSN:
1996-1073
Page Range / eLocation ID:
1660
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Turbulence is a major source of momentum, heat, moisture, and aerosol transport in the atmosphere. Hence, it is crucial to understand and accurately characterize turbulence mechanisms in atmospheric flows. Many complex factors in the atmosphere influence the turbulence structures including stratification and background shear. However, our understanding of the interacting effects of these factors on coherent turbulence structure evolutions is still limited. In this talk, we aim to bridge this knowledge gap by using mode decomposition techniques and a wide range of large-eddy simulation (LES) data. By developing a data-driven technique, we will characterize unique features of atmospheric boundary layer (ABL) turbulence under different forcing scenarios. We will present 3D LES wind speed snapshots of different ABL flows that will be used as dynamic mode decomposition (DMD) input data. Then, the obtained modes and eigenvalues will be employed to gain insights into coherent turbulence structures in ABLs. We will explain the physical meaning of dominant modes and how each mode relates to the physical cause of turbulence structures. The dominant modes, which are selected based on the mode amplitude, contain the most important spatial and temporal characteristics of the flow. We will evaluate the accuracy of the performance of this method by reconstructing the flow field with only a small number of modes, and then calculate the mean average error between the real flow and the reconstructed flow fields. We will present different data frequencies, wind speeds, and surface heat fluxes. This allows us to elucidate the modes and determine the conditions in which the mode decomposition provides more accurate results for the ABL flows. Our findings can be used to identify the major causes of turbulence in real atmospheric flows and could provide a deeper insight into the dynamics of turbulence in ABLs. Our results will also be useful for developing reduced-order models that can rapidly predict the turbulent ABL flow fields. 
    more » « less
  2. We investigate the spatial organization and temporal dynamics of large-scale, coherent structures in turbulent Rayleigh–Bénard convection via direct numerical simulation of a 6.3 aspect-ratio cylinder with Rayleigh and Prandtl numbers of 9.6×107 and 6.7 , respectively. Fourier modal decomposition is performed to investigate the structural organization of the coherent turbulent motions by analysing the length scales, time scales and the underlying dynamical processes that are ultimately responsible for the large-scale structure formation and evolution. We observe a high level of rotational symmetry in the large-scale structure in this study and that the structure is well described by the first four azimuthal Fourier modes. Two different large-scale organizations are observed during the duration of the simulation and these patterns are dominated spatially and energetically by azimuthal Fourier modes with frequencies of 2 and 3. Studies of the transition between these two large-scale patterns, radial and vertical variations in the azimuthal energy spectra, as well as the spatial and modal variations in the system's correlation time are conducted. Rotational dynamics are observed for individual Fourier modes and the global structure with strong similarities to the dynamics that have been reported for unit aspect-ratio domains in prior works. It is shown that the large-scale structures have very long correlation time scales, on the order of hundreds to thousands of free-fall time units, and that they are the primary source for a horizontal inhomogeneity within the system that can be observed during a finite, but a very long-time simulation or experiment. 
    more » « less
  3. null (Ed.)
    Wind turbine wakes are responsible for power losses and added fatigue loads of wind turbines. Providing capabilities to predict accurately wind-turbine wakes for different atmospheric conditions and turbine settings with low computational requirements is crucial for the optimization of wind-farm layout, and for improving wind-turbine controls aiming to increase annual energy production (AEP) and reduce the levelized cost of energy (LCOE) for wind power plants. In this work, wake measurements collected with a scanning Doppler wind Li- DAR for broad ranges of the atmospheric static stability regime and incoming wind speed are processed through K-means clustering. For computational feasibility, the cluster analysis is performed on a low-dimensional embedding of the collected data, which is obtained through proper orthogonal decomposition (POD). After data compression, we perform K-means of the POD modes to identify cluster centers and corresponding members from the LiDAR data. The different cluster centers allow us to visualize wake variability over ranges of atmospheric, wind, and turbine parameters. The results show that accurate mapping of the wake variability can be achieved with K-means clustering, which represents an initial step to develop data-driven wake models for accurate and low-computational-cost simulations of wind farms. 
    more » « less
  4. In this work, we introduce a scalable and efficient GPU-accelerated methodology for volumetric particle advection and finite-time Lyapunov exponent (FTLE) calculation, focusing on the analysis of Lagrangian Coherent Structures (LCS) in large-scale Direct Numerical Simulation (DNS) datasets across incompressible, supersonic, and hypersonic flow regimes. LCS play a significant role in turbulent boundary layer analysis, and our proposed methodology offers valuable insights into their behavior in various flow conditions. Our novel owning-cell locator method enables efficient, constant-time cell search, and the algorithm draws inspiration from classical search algorithms and modern multi-level approaches in numerical linear algebra. The proposed method is implemented for both multi-core CPUs and Nvidia GPUs, demonstrating strong scaling up to 32,768 CPU cores and up to 62 Nvidia V100 GPUs. By decoupling particle advection from other problems, we achieve modularity and extensibility, resulting in consistent parallel efficiency across different architectures. Our methodology was applied to calculate and visualize the FTLE on four turbulent boundary layers at different Reynolds and Mach numbers, revealing that coherent structures grow more isotropic proportional to the Mach number, and their inclination angle varies along the streamwise direction. We also observed increased anisotropy and FTLE organization at lower Reynolds numbers, with structures retaining coherency along both spanwise and streamwise directions. Additionally, we demonstrated the impact of lower temporal frequency sampling by upscaling with an efficient linear upsampler, preserving general trends with only 10% of the required storage. In summary, we present a particle search scheme for particle advection workloads in the context of visualizing LCS via FTLE that exhibits strong scaling performance and efficiency at scale. Our proposed algorithm is applicable across various domains requiring efficient search algorithms in large structured domains. While this manuscript focuses on the methodology and its application to LCS, an in-depth study of the physics and compressibility effects in LCS candidates will be explored in a future publication. 
    more » « less
  5. In this work, we introduce a scalable and efficient GPU-accelerated methodology for volumetric particle advection and finite-time Lyapunov exponent (FTLE) calculation, focusing on the analysis of Lagrangian coherent structures (LCS) in large-scale direct numerical simulation (DNS) datasets across incompressible, supersonic, and hypersonic flow regimes. LCS play a significant role in turbulent boundary layer analysis, and our proposed methodology offers valuable insights into their behavior in various flow conditions. Our novel owning-cell locator method enables efficient constant-time cell search, and the algorithm draws inspiration from classical search algorithms and modern multi-level approaches in numerical linear algebra. The proposed method is implemented for both multi-core CPUs and Nvidia GPUs, demonstrating strong scaling up to 32,768 CPU cores and up to 62 Nvidia V100 GPUs. By decoupling particle advection from other problems, we achieve modularity and extensibility, resulting in consistent parallel efficiency across different architectures. Our methodology was applied to calculate and visualize the FTLE on four turbulent boundary layers at different Reynolds and Mach numbers, revealing that coherent structures grow more isotropic proportional to the Mach number, and their inclination angle varies along the streamwise direction. We also observed increased anisotropy and FTLE organization at lower Reynolds numbers, with structures retaining coherency along both spanwise and streamwise directions. Additionally, we demonstrated the impact of lower temporal frequency sampling by upscaling with an efficient linear upsampler, preserving general trends with only 10% of the required storage. In summary, we present a particle search scheme for particle advection workloads in the context of visualizing LCS via FTLE that exhibits strong scaling performance and efficiency at scale. Our proposed algorithm is applicable across various domains, requiring efficient search algorithms in large, structured domains. While this article focuses on the methodology and its application to LCS, an in-depth study of the physics and compressibility effects in LCS candidates will be explored in a future publication.

     
    more » « less