skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics of Large Scale Turbulence in Finite-Sized Wind Farm Canopy Using Proper Orthogonal Decomposition and a Novel Fourier-POD Framework
Large scale coherent structures in the atmospheric boundary layer (ABL) are known to contribute to the power generation in wind farms. In order to understand the dynamics of large scale structures, we perform proper orthogonal decomposition (POD) analysis of a finite sized wind turbine array canopy in the current paper. The POD analysis sheds light on the dynamics of large scale coherent modes as well as on the scaling of the eigenspectra in the heterogeneous wind farm. We also propose adapting a novel Fourier-POD (FPOD) modal decomposition which performs POD analysis of spanwise Fourier-transformed velocity. The FPOD methodology helps us in decoupling the length scales in the spanwise and streamwise direction when studying the 3D energetic coherent modes. Additionally, the FPOD eigenspectra also provide deeper insights for understanding the scaling trends of the three-dimensional POD eigenspectra and its convergence, which is inherently tied to turbulent dynamics. Understanding the behaviour of large scale structures in wind farm flows would not only help better assess reduced order models (ROM) for forecasting the flow and power generation but would also play a vital role in improving the decision making abilities in wind farm optimization algorithms in future. Additionally, this study also provides guidance for better understanding of the POD analysis in the turbulence and wind farm community.  more » « less
Award ID(s):
1707075 1335868
PAR ID:
10190772
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Energies
Volume:
13
Issue:
7
ISSN:
1996-1073
Page Range / eLocation ID:
1660
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the spatial organization and temporal dynamics of large-scale, coherent structures in turbulent Rayleigh–Bénard convection via direct numerical simulation of a 6.3 aspect-ratio cylinder with Rayleigh and Prandtl numbers of 9.6×107 and 6.7 , respectively. Fourier modal decomposition is performed to investigate the structural organization of the coherent turbulent motions by analysing the length scales, time scales and the underlying dynamical processes that are ultimately responsible for the large-scale structure formation and evolution. We observe a high level of rotational symmetry in the large-scale structure in this study and that the structure is well described by the first four azimuthal Fourier modes. Two different large-scale organizations are observed during the duration of the simulation and these patterns are dominated spatially and energetically by azimuthal Fourier modes with frequencies of 2 and 3. Studies of the transition between these two large-scale patterns, radial and vertical variations in the azimuthal energy spectra, as well as the spatial and modal variations in the system's correlation time are conducted. Rotational dynamics are observed for individual Fourier modes and the global structure with strong similarities to the dynamics that have been reported for unit aspect-ratio domains in prior works. It is shown that the large-scale structures have very long correlation time scales, on the order of hundreds to thousands of free-fall time units, and that they are the primary source for a horizontal inhomogeneity within the system that can be observed during a finite, but a very long-time simulation or experiment. 
    more » « less
  2. null (Ed.)
    Wind turbine wakes are responsible for power losses and added fatigue loads of wind turbines. Providing capabilities to predict accurately wind-turbine wakes for different atmospheric conditions and turbine settings with low computational requirements is crucial for the optimization of wind-farm layout, and for improving wind-turbine controls aiming to increase annual energy production (AEP) and reduce the levelized cost of energy (LCOE) for wind power plants. In this work, wake measurements collected with a scanning Doppler wind Li- DAR for broad ranges of the atmospheric static stability regime and incoming wind speed are processed through K-means clustering. For computational feasibility, the cluster analysis is performed on a low-dimensional embedding of the collected data, which is obtained through proper orthogonal decomposition (POD). After data compression, we perform K-means of the POD modes to identify cluster centers and corresponding members from the LiDAR data. The different cluster centers allow us to visualize wake variability over ranges of atmospheric, wind, and turbine parameters. The results show that accurate mapping of the wake variability can be achieved with K-means clustering, which represents an initial step to develop data-driven wake models for accurate and low-computational-cost simulations of wind farms. 
    more » « less
  3. To maximize the profitability of wind power plants, wind farms are often characterized by high wind turbine density leading to operations with reduced turbine spacing. As a consequence, the overall wind farm power capture is hindered by complex flow features associated with flow modifications induced by the various wind turbine rotors. In addition to the generation of wakes, the velocity of the incoming wind field can reduce due to the increased pressure in the proximity of a single turbine rotor (named induction); a similar effect occurs at the wind-farm level (global blockage), which can have a noticeable impact on power production. On the other hand, intra-wind-farm regions featuring increased velocity compared to the freestream (speedups) have also been observed, which can be a source for a potential power boost. To quantify these rotor-induced effects on the incoming wind velocity field, three profiling LiDARs and one scanning wind LiDAR were deployed both before and after the construction of an onshore wind turbine array. The different wind conditions are classified according to the ambient turbulence intensity and streamwise/spanwise spacing among wind turbines. The analysis of the mean velocity field reveals enhanced induction and speedup under stably stratified atmospheric conditions. Furthermore, a reduced horizontal area between adjacent turbines has a small impact on the induction zone but increases significantly the speedup between adjacent rotors. 
    more » « less
  4. Fast solution of wave propagation in periodic structures usually relies on simplified approaches, such as analytical methods, transmission line models, scattering matrix approaches, plane wave methods, etc. For complex multi-dimensional problems, computationally intensive direct numerical simulation (DNS) is always needed. This study demonstrates a fast and accurate simulation methodology enabled by a physics-based learning methodology, derived from proper orthogonal decomposition (POD) and Galerkin projection, for periodic quantum nanostructure and photonic crystals. POD is a projection-based method that generates optimal basis functions (or POD modes) via solution data collected from DNSs. This process trains the POD modes to adapt parametric variations of the system and offers the best least squares (LS) fit to the solution using the smallest number of modes. This is very different from other projection approaches, e.g., Fourier, Legendre, Bessel, Airy functions, etc., that adopt assumed basis functions selected for the problem based on the solution form. After generating the optimal POD modes, Galerkin projection of the wave equation onto each of the POD modes is performed to close the model and incorporate physical principles guided by the wave equation. Such a rigorous approach offers efficient simulations with high accuracy and exhibits the extrapolation ability in cases reasonably beyond the training bounds. The POD-Galerkin methodology is applied in this study to predict band structures and wave solutions for 2D periodic quantum-dot and photonic-lattice structures. The plane-wave approach is also included in a periodic quantum-dot structure to illustrate the superior performance of the POD-Galerkin methodology. The POD-Galerkin approach offers a 2-order computing speedup for both nanostructure and optical superlattices, compared to DNS, when solving both the wave solution and band structure. If the band structure is the only concern, a 4-order improvement in computational efficiency can be achieved. Fig. 1(a) shows the optical superlattice in a demonstration, where a unit cell includes 22 discs with diagonally symmetrical refractive indices and the background index n = 1. The POD modes for this case are trained by TE mode electric field data collected from DNSs with variation of diagonally symmetrical refractive indices. The LS error of the predicted electric field wave solution from the POD-Galerkin approach, shown in Fig. 1(b) compared to DNS, is below 1% with just 8 POD modes that offer a more than 4-order reduction in the degrees of freedom, compared to DNS. In addition, an extremely accurate prediction of band structure is illustrated in Fig. 1(c) with a maximum error below 0.1% in the entire Brillouin zone. 
    more » « less
  5. Light detection and ranging (LiDAR) measurements of isolated wakes generated by wind turbines installed at an onshore wind farm are leveraged to characterize the variability of the wake mean velocity and turbulence intensity during typical operations, which encompass a breadth of atmospheric stability regimes and rotor thrust coefficients. The LiDAR measurements are clustered through the k-means algorithm, which enables identifying the most representative realizations of wind turbine wakes while avoiding the imposition of thresholds for the various wind and turbine parameters. Considering the large number of LiDAR samples collected to probe the wake velocity field, the dimensionality of the experimental dataset is reduced by projecting the LiDAR data on an intelligently truncated basis obtained with the proper orthogonal decomposition (POD). The coefficients of only five physics-informed POD modes are then injected in the k-means algorithm for clustering the LiDAR dataset. The analysis of the clustered LiDAR data and the associated supervisory control and data acquisition and meteorological data enables the study of the variability of the wake velocity deficit, wake extent, and wake-added turbulence intensity for different thrust coefficients of the turbine rotor and regimes of atmospheric stability. Furthermore, the cluster analysis of the LiDAR data allows for the identification of systematic off-design operations with a certain yaw misalignment of the turbine rotor with the mean wind direction. 
    more » « less