skip to main content


Title: Hall effect in protostellar disc formation and evolution
ABSTRACT The Hall effect is recently shown to be efficient in magnetized dense molecular cores and could lead to a bimodal formation of rotationally supported discs (RSDs) in the first core phase. However, how such Hall dominated systems evolve in the protostellar accretion phase remains unclear. We carry out 2D axisymmetric simulations including Hall effect and ohmic dissipation, with realistic magnetic diffusivities computed from our equilibrium chemical network. We find that Hall effect only becomes efficient when the large population of very small grains (VSGs: ≲100 Å) is removed from the standard Mathis–Rumpl–Nordsieck size distribution. With such an enhanced Hall effect, however, the bimodality of disc formation does not continue into the main accretion phase. The outer part of the initial ∼40 au disc formed in the anti-aligned configuration ($\boldsymbol {\Omega \cdot B}\lt 0$) flattens into a thin rotationally supported Hall current sheet as Hall effect moves the poloidal magnetic field radially inward relative to matter, leaving only the inner ≲10–20 au RSD. In the aligned configuration ($\boldsymbol {\Omega \cdot B}\gt 0$), disc formation is suppressed initially but a counter-rotating disc forms subsequently due to efficient azimuthal Hall drift. The counter-rotating disc first grows to ∼30 au as Hall effect moves the magnetic field radially outward, but only the inner ≲10 au RSD is long lived like in the anti-aligned case. Besides removing VSGs, cosmic ray ionization rate should be below a few 10−16 s−1 for Hall effect to be efficient in disc formation. We conclude that Hall effect produces small ≲10–20 au discs regardless of the polarity of the magnetic field, and that radially outward diffusion of magnetic fields remains crucial for disc formation and growth.  more » « less
Award ID(s):
1716259
NSF-PAR ID:
10190803
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
492
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3375 to 3395
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Non-ideal magnetohydrodynamic (MHD) effects have been shown recently as a robust mechanism of averting the magnetic braking ‘catastrophe’ and promoting protostellar disc formation. However, the magnetic diffusivities that determine the efficiency of non-ideal MHD effects are highly sensitive to microphysics. We carry out non-ideal MHD simulations to explore the role of microphysics on disc formation and the interplay between ambipolar diffusion (AD) and Hall effect during the protostellar collapse. We find that removing the smallest grain population (≲10 nm) from the standard MRN size distribution is sufficient for enabling disc formation. Further varying the grain sizes can result in either a Hall-dominated or an AD-dominated collapse; both form discs of tens of au in size regardless of the magnetic field polarity. The direction of disc rotation is bimodal in the Hall-dominated collapse but unimodal in the AD-dominated collapse. We also find that AD and Hall effect can operate either with or against each other in both radial and azimuthal directions, yet the combined effect of AD and Hall is to move the magnetic field radially outward relative to the infalling envelope matter. In addition, microphysics and magnetic field polarity can leave profound imprints both on observables (e.g. outflow morphology, disc to stellar mass ratio) and on the magnetic field characteristics of protoplanetary discs. Including Hall effect relaxes the requirements on microphysics for disc formation, so that prestellar cores with cosmic ray ionization rate of ≲2–3 × 10−16 s−1 can still form small discs of ≲10 au radius. We conclude that disc formation should be relatively common for typical prestellar core conditions, and that microphysics in the protostellar envelope is essential to not only disc formation, but also protoplanetary disc evolution. 
    more » « less
  2. ABSTRACT

    We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the galaxy. Among galaxies with a high fraction ($\gt 70{{\ \rm per\ cent}}$) of their young stars in a thin disc (h/R ∼ 0.1), we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (≳20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to $\lesssim 10^4\, {\rm K}$; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disc, and while cooling transitions from a quasi-spherical spatial configuration to a more-flattened, disc-like configuration. We show that the existence of this ‘rotating cooling flow’ accretion mode is strongly correlated with the fraction of stars forming in a thin disc, using a sample of 17 z ∼ 0 galaxies spanning a halo mass range of 1010.5 M⊙ ≲ Mh ≲ 1012 M⊙ and stellar mass range of 108 M⊙ ≲ M⋆ ≲ 1011 M⊙. Notably, galaxies with a thick disc or irregular morphology do not undergo significant angular momentum alignment of gas prior to accretion and show no correspondence between halo gas cooling and flattening. Our results suggest that rotating cooling flows (or, more generally, rotating subsonic flows) that become coherent and angular momentum-supported prior to accretion on to the galaxy are likely a necessary condition for the formation of thin, star-forming disc galaxies in a ΛCDM universe.

     
    more » « less
  3. ABSTRACT

    Counter-rotating components in galaxies are one of the most direct forms of evidence for past gas accretion or merging. We discovered 10 edge-on disc gaseous counter-rotators in a sample of 523 edge-on galaxies identified in the final MaNGA (Mapping Nearby Galaxies at APO) IFU sample. The counter-rotators tend to located in small groups. The gaseous counter-rotators have intermediate stellar masses and and located in the green valley and red sequence of the colour–magnitude diagram. The average vertical extents of the stellar and ionized gas discs are the same as for the rest of the sample while their radial gas and stellar distributions are more centrally concentrated. This may point at angular momentum loss during the formation process of the counter-rotating discs. The counter-rotators have low gas and dust content, weak emission-line strengths, and low star formation rates. This suggests that the formation of counter-rotators may be an efficient way to quench galaxies. One counter-rotator, SDSS J080016.09+292817.1 (Galaxy F), has a post-starburst region and a possible AGN at the centre. Another counter-rotator, SDSS J131234.03+482159.8 (Galaxy H), is identified as a potential ongoing galaxy interaction with its companion satellite galaxy, a gas-rich spiral galaxy. This may be representative case of a gaseous counter-rotator forming through a merger origin. However, tidal distortions expected in mergers are only found in a few of the galaxies and we cannot rule out direct gas accretion as another formation mechanism.

     
    more » « less
  4. ABSTRACT Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of per cent. A standard explanation is that dippers host nearly edge-on (id ≈ 70°) protoplanetary discs that allow close-in (<1 au) dust lifted slightly out of the mid-plane to partially occult the star. The identification of a face-on dipper disc and growing evidence of inner disc misalignments brings this scenario into question. Thus, we uniformly (re)derive the inclinations of 24 dipper discs resolved with (sub-)mm interferometry from ALMA. We find that dipper disc inclinations are consistent with an isotropic distribution over id ≈ 0−75°, above which the occurrence rate declines (likely an observational selection effect due to optically thick disc mid-planes blocking their host stars). These findings indicate that the dipper phenomenon is unrelated to the outer (>10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and ‘broken’ discs caused by inclined (sub-)stellar or planetary companions. 
    more » « less
  5. ABSTRACT

    Rings and gaps are commonly observed in the dust continuum emission of young stellar discs. Previous studies have shown that substructures naturally develop in the weakly ionized gas of magnetized, non-ideal MHD discs. The gas rings are expected to trap large mm/cm-sized grains through pressure gradient-induced radial dust–gas drift. Using 2D (axisymmetric) MHD simulations that include ambipolar diffusion and dust grains of three representative sizes (1 mm, 3.3 mm, and 1 cm), we show that the grains indeed tend to drift radially relative to the gas towards the centres of the gas rings, at speeds much higher than in a smooth disc because of steeper pressure gradients. However, their spatial distribution is primarily controlled by meridional gas motions, which are typically much faster than the dust–gas drift. In particular, the grains that have settled near the mid-plane are carried rapidly inwards by a fast accretion stream to the inner edges of the gas rings, where they are lifted up by the gas flows diverted away from the mid-plane by a strong poloidal magnetic field. The flow pattern in our simulation provides an attractive explanation for the meridional flows recently inferred in HD 163296 and other discs, including both ‘collapsing’ regions where the gas near the disc surface converges towards the mid-plane and a disc wind. Our study highlights the prevalence of the potentially observable meridional flows associated with the gas substructure formation in non-ideal MHD discs and their crucial role in generating rings and gaps in dust.

     
    more » « less