- Publication Date:
- NSF-PAR ID:
- 10159382
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 489
- Issue:
- 4
- Page Range or eLocation-ID:
- 5326 to 5347
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT The Hall effect is recently shown to be efficient in magnetized dense molecular cores and could lead to a bimodal formation of rotationally supported discs (RSDs) in the first core phase. However, how such Hall dominated systems evolve in the protostellar accretion phase remains unclear. We carry out 2D axisymmetric simulations including Hall effect and ohmic dissipation, with realistic magnetic diffusivities computed from our equilibrium chemical network. We find that Hall effect only becomes efficient when the large population of very small grains (VSGs: ≲100 Å) is removed from the standard Mathis–Rumpl–Nordsieck size distribution. With such an enhanced Hall effect, however, the bimodality of disc formation does not continue into the main accretion phase. The outer part of the initial ∼40 au disc formed in the anti-aligned configuration ($\boldsymbol {\Omega \cdot B}\lt 0$) flattens into a thin rotationally supported Hall current sheet as Hall effect moves the poloidal magnetic field radially inward relative to matter, leaving only the inner ≲10–20 au RSD. In the aligned configuration ($\boldsymbol {\Omega \cdot B}\gt 0$), disc formation is suppressed initially but a counter-rotating disc forms subsequently due to efficient azimuthal Hall drift. The counter-rotating disc first grows to ∼30 au as Hall effect moves the magnetic fieldmore »
-
ABSTRACT Non-ideal magnetohydrodynamic (MHD) effects have been shown recently as a robust mechanism of averting the magnetic braking ‘catastrophe’ and promoting protostellar disc formation. However, the magnetic diffusivities that determine the efficiency of non-ideal MHD effects are highly sensitive to microphysics. We carry out non-ideal MHD simulations to explore the role of microphysics on disc formation and the interplay between ambipolar diffusion (AD) and Hall effect during the protostellar collapse. We find that removing the smallest grain population (≲10 nm) from the standard MRN size distribution is sufficient for enabling disc formation. Further varying the grain sizes can result in either a Hall-dominated or an AD-dominated collapse; both form discs of tens of au in size regardless of the magnetic field polarity. The direction of disc rotation is bimodal in the Hall-dominated collapse but unimodal in the AD-dominated collapse. We also find that AD and Hall effect can operate either with or against each other in both radial and azimuthal directions, yet the combined effect of AD and Hall is to move the magnetic field radially outward relative to the infalling envelope matter. In addition, microphysics and magnetic field polarity can leave profound imprints both on observables (e.g. outflow morphology, discmore »
-
ABSTRACT Magnetically arrested accretion discs (MADs) around black holes (BHs) have the potential to stimulate the production of powerful jets and account for recent ultra-high-resolution observations of BH environments. Their main properties are usually attributed to the accumulation of dynamically significant net magnetic (vertical) flux throughout the arrested region, which is then regulated by interchange instabilities. Here, we propose instead that it is mainly a dynamically important toroidal field – the result of dynamo action triggered by the significant but still relatively weak vertical field – that defines and regulates the properties of MADs. We suggest that rapid convection-like instabilities, involving interchange of toroidal flux tubes and operating concurrently with the magnetorotational instability (MRI), can regulate the structure of the disc and the escape of net flux. We generalize the convective stability criteria and disc structure equations to include the effects of a strong toroidal field and show that convective flows could be driven towards two distinct marginally stable states, one of which we associate with MADs. We confirm the plausibility of our theoretical model by comparing its quantitative predictions to simulations of both MAD and SANE (standard and normal evolution; strongly magnetized but not ‘arrested’) discs, and suggest amore »
-
ABSTRACT Rings and gaps are commonly observed in the dust continuum emission of young stellar discs. Previous studies have shown that substructures naturally develop in the weakly ionized gas of magnetized, non-ideal MHD discs. The gas rings are expected to trap large mm/cm-sized grains through pressure gradient-induced radial dust–gas drift. Using 2D (axisymmetric) MHD simulations that include ambipolar diffusion and dust grains of three representative sizes (1 mm, 3.3 mm, and 1 cm), we show that the grains indeed tend to drift radially relative to the gas towards the centres of the gas rings, at speeds much higher than in a smooth disc because of steeper pressure gradients. However, their spatial distribution is primarily controlled by meridional gas motions, which are typically much faster than the dust–gas drift. In particular, the grains that have settled near the mid-plane are carried rapidly inwards by a fast accretion stream to the inner edges of the gas rings, where they are lifted up by the gas flows diverted away from the mid-plane by a strong poloidal magnetic field. The flow pattern in our simulation provides an attractive explanation for the meridional flows recently inferred in HD 163296 and other discs, including both ‘collapsing’ regions where themore »
-
ABSTRACT Recent observations indicate that mm/cm-sized grains may exist in the embedded protostellar discs. How such large grains grow from the micron size (or less) in the earliest phase of star formation remains relatively unexplored. In this study, we take a first step to model the grain growth in the protostellar environment, using 2D (axisymmetric) radiation hydrodynamic and grain growth simulations. We show that the grain growth calculations can be greatly simplified by the ‘terminal velocity approximation’, where the dust drift velocity relative to the gas is proportional to its stopping time, which is proportional to the grain size. We find that the grain–grain collision from size-dependent terminal velocity alone is too slow to convert a significant fraction of the initially micron-sized grains into mm/cm sizes during the deeply embedded Class 0 phase. Substantial grain growth is achieved when the grain–grain collision speed is enhanced by a factor of 4. The dust growth above and below the disc midplane enables the grains to settle faster towards the midplane, which increases the local dust-to-gas ratio, which, in turn, speeds up further growth there. How this needed enhancement can be achieved is unclear, although turbulence is a strong possibility that deserves furthermore »