Atmospheric water vapor is predominately sourced from the tropics, such that characterizing the link between the tropical water cycle and global climate is of critical importance. Studies of central Andean climate from Lake Junín (11 °S, Peru) show that tropical glacial extent tracks global ice volume at a ~100 ka periodicity for the last 6 glacial cycles, indicating a tight coupling between tropical water balance and high latitude climate. However, it can be difficult to decouple temperature, precipitation, and water balance histories from records of glacial extent, especially for older intervals. In this work, we focus on one such interval, MIS 15 (621–563 ka), when the connections between tropical Andean water balance and global climate seem different than the last glacial cycle. Globally, MIS 15 was a weak interglacial, with cool temperatures and low GHG concentrations, however, the Lake Junín glacial record suggests an amplified hydroclimate response to this interglacial, stronger than any other over the last 700 ka. Causes for this apparent tropical amplification may be due to large, precession-paced changes in meridional insolation gradients that exceed other interglacials owning to enhanced orbital eccentricity. Given that the role of precession on South American monsoon strength over the last glacial cycle is well established, we hypothesize that monsoon strength may have been highly variable during MIS 15 and forced changes in central Andean water balance and glacial extent. To test this, we reconstructed temperature and evaporation histories using carbonate clumped and triple oxygen isotopes of Lake Junín sediments. Preliminary results suggest temperatures were relatively stable, but possibly lower than both the present and Holocene, consistent with cool global climate at that time. Triple oxygen isotope values vary substantially, indicating massive swings in lake hydrology, between open and (nearly?) closed basin hydrology on a ~12 ka cycle that exactly match insolation variations. From this work, we conclude that hydrologic change in the central Andes was rapid and extreme during MIS 15, owning to profound changes in monsoon strength. Given that monsoons in other sectors are also sensitive to insolation changes, our work could suggest pervasive hydrologic variability throughout the tropics at this time. 
                        more » 
                        « less   
                    
                            
                            High-latitude warming initiated the onset of the last deglaciation in the tropics
                        
                    
    
            Atmospheric greenhouse gas concentrations are thought to have synchronized global temperatures during Pleistocene glacial–interglacial cycles, yet their impact relative to changes in high-latitude insolation and ice-sheet extent remains poorly constrained. Here, we use tropical glacial fluctuations to assess the timing of low-latitude temperature changes relative to global climate forcings. We report 10 Be ages of moraines in tropical East Africa and South America and show that glaciers reached their maxima at ~29 to 20 ka, during the global Last Glacial Maximum. Tropical glacial recession was underway by 20 ka, before the rapid CO 2 rise at ~18.2 ka. This “early” tropical warming was influenced by rising high-latitude insolation and coincident ice-sheet recession in both polar regions, which lowered the meridional thermal gradient and reduced tropical heat export to the high latitudes. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10190997
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 5
- Issue:
- 12
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaaw2610
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. Strong similarities in Holocene climate reconstructions derived from multipleproxies (BSi, TOC – total organic carbon, δ13C, C∕N, MS – magnetic susceptibility, δ15N)preserved in sediments from both glacial and non-glacial lakes across Icelandindicate a relatively warm early to mid Holocene from 10 to 6 ka,overprinted with cold excursions presumably related to meltwater impact onNorth Atlantic circulation until 7.9 ka. Sediment in lakes from glacialcatchments indicates their catchments were ice-free during this interval.Statistical treatment of the high-resolution multi-proxy paleoclimate lakerecords shows that despite great variability in catchment characteristics,the sediment records document more or less synchronous abrupt, colddepartures as opposed to the smoothly decreasing trend in Northern Hemispheresummer insolation. Although all lake records document a decline in summertemperature through the Holocene consistent with the regular decline insummer insolation, the onset of significant summer cooling occurs ∼5 ka at high-elevation interior sites but is variably later at sitescloser to the coast, suggesting that proximity to the sea may modulate the impactfrom decreasing summer insolation. The timing of glacier inception during themid Holocene is determined by the descent of the equilibrium line altitude(ELA), which is dominated by the evolution of summer temperature as summerinsolation declined as well as changes in sea surface temperature for coastalglacial systems. The glacial response to the ELA decline is also highlydependent on the local topography. The initial ∼5 ka nucleation ofLangjökull in the highlands of Iceland defines the onset of neoglaciationin Iceland. Subsequently, a stepwise expansion of both Langjökull andnortheast Vatnajökull occurred between 4.5 and 4.0 ka, with a secondabrupt expansion ∼3 ka. Due to its coastal setting and lowertopographic threshold, the initial appearance of Drangajökull in the NWof Iceland was delayed until ∼2.3 ka. All lake records reflect abruptsummer temperature and catchment disturbance at ∼4.5 ka, statisticallyindistinguishable from the global 4.2 ka event, and a second widespreadabrupt disturbance at 3.0 ka, similar to the stepwise expansion ofLangjökull and northeast Vatnajökull. Both are intervalscharacterized by large explosive volcanism and tephra distribution in Icelandresulting in intensified local soil erosion. The most widespread increase in glacier advance, landscapeinstability, and soil erosion occurred shortly after 2 ka, likely due to acomplex combination of increased impact from volcanic tephra deposition,cooling climate, and increased sea ice off the coast of Iceland. All lakerecords indicate a strong decline in temperature ∼1.5 ka, whichculminated during the Little Ice Age (1250–1850 CE) when the glaciersreached their maximum Holocene dimensions.more » « less
- 
            During the last interglacial (LIG) period, global mean sea level (GMSL) was higher than at present, likely driven by greater high-latitude insolation. Past sea-level estimates require elevation measurements and age determination of marine sediments that formed at or near sea level, and those elevations must be corrected for glacial isostatic adjustment (GIA). However, this GIA correction is subject to uncertainties in the GIA model inputs, namely, Earth’s rheology and past ice history, which reduces precision and accuracy in estimates of past GMSL. To better constrain the GIA process, we compare our data and existing LIG sea-level data across the Bahamian archipelago with a suite of 576 GIA model predictions. We calculated weights for each GIA model based on how well the model fits spatial trends in the regional sea-level data and then used the weighted GIA corrections to revise estimates of GMSL during the LIG. During the LIG, we find a 95% probability that global sea level peaked at least 1.2 m higher than today, and it is very unlikely (5% probability) to have exceeded 5.3 m. Estimates increase by up to 30% (decrease by up to 20%) for portions of melt that originate from the Greenland ice sheet (West Antarctic ice sheet). Altogether, this work suggests that LIG GMSL may be lower than previously assumed.more » « less
- 
            Abstract We review geochronological data relating to the timing and rate of Laurentide Ice Sheet recession in the northeastern United States and model ice margin movements in a Bayesian framework using compilations of previously published organic14C (n= 133) andin situcosmogenic10Be (n= 95) ages. We compare the resulting method‐specific chronologies with glacial varve records that serve as independent constraints on the pace of ice recession to: (1) construct a synthesis of deglacial chronology throughout the region; and (2) assess the accuracy of each chronometer for constraining the timing of deglaciation. Near the Last Glacial Maximum terminal moraine zone,10Be and organic14C ages disagree by thousands of years and limit determination of the initial recession to a date range of 24–20 ka. We infer that10Be inherited from pre‐glacial exposure adds 2–6 kyr to many exposure ages near the terminal moraines, whereas macrofossil14C ages are typically 4–8 kyr too young due to a substantial lag between ice recession and sufficient organic material accumulation for dating in some basins. Age discrepancies between these chronometers decrease with distance from the terminal moraine, due to less10Be inherited from prior exposure and a reduced lag between ice recession and organic material deposition.14C and10Be ages generally agree at locations more than 200 km distal from the terminal moraines and suggest a mostly continuous history of ice recession throughout the region from 18 to 13 ka with a variable pace best documented by varves.more » « less
- 
            null (Ed.)Abstract Understanding marine-terminating ice sheet response to past climate transitions provides valuable long-term context for observations of modern ice sheet change. Here, we reconstruct the last deglaciation of marine-terminating Cordilleran Ice Sheet (CIS) margins in Southeast Alaska and explore potential forcings of western CIS retreat. We combine 27 new cosmogenic 10 Be exposure ages, 13 recently published 10 Be ages, and 25 new 14 C ages from raised marine sediments to constrain CIS recession. Retreat from the outer coast was underway by 17 ka, and the inner fjords and sounds were ice-free by 15 ka. After 15 ka, the western margin of the CIS became primarily land-terminating and alpine glaciers disappeared from the outer coast. Isolated alpine glaciers may have persisted in high inland peaks until the early Holocene. Our results suggest that the most rapid phase of CIS retreat along the Pacific coast occurred between ~17 and 15 ka. This retreat was likely driven by processes operating at the ice-ocean interface, including sea level rise and ocean warming. CIS recession after ~15 ka occurred during a time of climatic amelioration in this region, when both ocean and air temperatures increased. These data highlight the sensitivity of marine-terminating CIS regions to deglacial climate change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    