skip to main content


Title: Dibridged, Monobridged, Vinylidene-Like, and Linear Structures for the Alkaline Earth Dihydrides Be 2 H 2 , Mg 2 H 2 , Ca 2 H 2 , Sr 2 H 2 , and Ba 2 H 2 . Proposals for Observations
Award ID(s):
1664379
PAR ID:
10191087
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
59
Issue:
15
ISSN:
0020-1669
Page Range / eLocation ID:
10404 to 10408
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The gas-phase reaction of O + H 3 + has two exothermic product channels: OH + + H 2 and H 2 O + + H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coefficients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% versus 30% for the formation of OH + + H 2 versus H 2 O + + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% versus 42% at 10 K. We provide recommended rate coefficients for the two product channels for two cases, one where the initial fine-structure population of the O( 3 P J ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium. 
    more » « less
  2. To cut CO2emissions, we propose to directly convert shale gas into value-added products with a new H2/O2co-transport membrane (HOTM) reactor. A Multiphysics model has been built to simulate the membrane and the catalytic bed with parameters obtained from experimental validation. The model was used to compare C2 yield and CH4conversion rate between the membrane reactor and the state-of-the-art fixed-bed reactor with the same dimensions and operating conditions. The results indicate that (1) the membrane reactor is more efficient in consuming CH4for a given amount of fed O2. (2) The C2 selectivity of the membrane reactor is higher due to the gradual addition of O2into the reactor. (3) The current proposed membrane reactor can have a decent proton molar flux density but most of the proton molar flux will contribute to producing H2O on the feed side under the current operating conditions. The paper for the first-time projects the performance of the membrane reactor for combined H2O/H2removal and C2 production. It could be used as important guidance for experimentalists to design next generation natural gas conversion reactors.

     
    more » « less
  3. The optimized geometries, vibrational frequencies, and dissociation energies from MP2 and CCSD(T) computations with large correlation consistent basis sets are reported for (H2S)2and H2O/H2S. Anharmonic vibrational frequencies have also been computed with second‐order vibrational perturbation theory (VPT2). As such, the fundamental frequencies, overtones, and combination bands reported in this study should also provide a useful road map for future spectroscopic studies of the simple but important heterogeneous H2O/H2S dimer in which the hydrogen bond donor and acceptor can interchange, leading to two unique minima with very similar energies. Near the CCSD(T) complete basis set limit, the HOH⋯SH2configuration (H2O donor) lies only 0.2 kcal mol−1below the HSH⋯OH2structure (H2S donor). When the zero‐point vibrational energy is included, however, the latter configuration becomes slightly lower in energy than the former by <0.1 kcal mol−1. © 2018 Wiley Periodicals, Inc.

     
    more » « less