Abstract Ultra‐small nanoparticles of CeO2obtained in molecular form, so‐called molecular nanoparticles, have been limited to date to a family whose largest member is of nuclearity Ce40with a {Ce40O58} core atom count. Herein we report that a synthetic procedure has been developed to the cation [Ce100O149(OH)18(O2CPh)60(PhCO2H)12(H2O)20]16+, a member with a much higher Ce100nuclearity and a {Ce100O167} core that is more akin to the smallest ceria nanoparticles. Its crystal structure reveals it to possess a 2.4 nm size and high D2dsymmetry, and it has also allowed identification of core surface features including facet composition, the presence and location of Ce3+and H+(i.e. HO−) ions, and the binding modes of the ligand monolayer of benzoate, benzoic acid, and water ligands.
more »
« less
Molecular nanoparticles of cerium dioxide: structure-directing effect of halide ions
The use of halide ions in the synthesis of Ce/O clusters diverts the reaction to two halide-containing products: Cl − gives a new Ce 20 nuclearity with both a high 1 : 1 Ce 3+ : Ce 4+ ratio and a high percentage of (100) facet coverage, whereas F − gives a known Ce 6 nuclearity. Both products include bridging halide ions and are thus the first confirmation of non-oxo (OH − /O 2− ) anion incorporation onto the Ce/O cluster core.
more »
« less
- PAR ID:
- 10191103
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 56
- Issue:
- 40
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 5382 to 5385
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ultra‐small nanoparticles of CeO2obtained in molecular form, so‐called molecular nanoparticles, have been limited to date to a family whose largest member is of nuclearity Ce40with a {Ce40O58} core atom count. Herein we report that a synthetic procedure has been developed to the cation [Ce100O149(OH)18(O2CPh)60(PhCO2H)12(H2O)20]16+, a member with a much higher Ce100nuclearity and a {Ce100O167} core that is more akin to the smallest ceria nanoparticles. Its crystal structure reveals it to possess a 2.4 nm size and high D2dsymmetry, and it has also allowed identification of core surface features including facet composition, the presence and location of Ce3+and H+(i.e. HO−) ions, and the binding modes of the ligand monolayer of benzoate, benzoic acid, and water ligands.more » « less
-
Two new Ce IV /O 2− clusters, (pyH) 8 [Ce 10 O 4 (OH) 4 (O 3 PPh) 12 (NO 3 ) 12 ] (1) and [Ce 6 O 4 (OH) 4 (O 2 PPh 2 ) 4 (O 2 C t Bu) 8 ] (2), have been prepared that contain P-based ligands for the first time. They were obtained from the reaction of (NH 4 ) 2 [Ce(NO 3 ) 6 ], PhPO 3 H 2 or Ph 2 PO 2 H, and t BuCO 2 H in a 2 : 1 : 2 molar ratio in pyridine/MeOH (10 : 1 mL). Both compounds contain a {Ce 6 O 4 (OH) 4 } face-capped octahedral core, with 1 containing an additional four Ce IV on the outside to give a supertetrahedral Ce 10 topology; the {Ce 6 O 8 } unit is the smallest recognizable fragment of the fluorite structure of CeO 2 . The HO˙ radical scavenging activities of 1 and 2 were measured by UV/vis spectral monitoring of methylene blue oxidation by HO˙ radicals in the presence and absence of the Ce/O clusters, and the results compared with those for larger Ce 24 and Ce 38 molecular nanoparticles of CeO 2 prepared in previous work. 1 and 2 are both very poor HO˙ radical scavengers compared with Ce 24 and Ce 38 , a result that is consistent with reports in the literature that PO 4 3− ions inhibit the radical scavenging ability of traditional CeO 2 nanoparticles and putatively assigned to PO 4 3− binding to the surface.more » « less
-
Abstract A mononuclear nonheme manganese(IV)–oxo complex binding the Ce4+ion, [(dpaq)MnIV(O)]+–Ce4+(1‐Ce4+), was synthesized by reacting [(dpaq)MnIII(OH)]+(2) with cerium ammonium nitrate (CAN).1‐Ce4+was characterized using various spectroscopic techniques, such as UV/Vis, EPR, CSI‐MS, resonance Raman, XANES, and EXAFS, showing an Mn−O bond distance of 1.69 Å with a resonance Raman band at 675 cm−1. Electron‐transfer and oxygen atom transfer reactivities of1‐Ce4+were found to be greater than those of MnIV(O) intermediates binding redox‐inactive metal ions (1‐Mn+). This study reports the first example of a redox‐active Ce4+ion‐bound MnIV‐oxo complex and its spectroscopic characterization and chemical properties.more » « less
An official website of the United States government

