skip to main content


Title: Two-dimensional halide perovskite lateral epitaxial heterostructures
Epitaxial heterostructures based on oxide perovskites and III–V, II–VI and transition metal dichalcogenide semiconductors form the foundation of modern electronics and optoelectronics. Halide perovskites—an emerging family of tunable semiconductors with desirable properties—are attractive for applications such as solution-processed solar cells, light-emitting diodes, detectors and lasers. Their inherently soft crystal lattice allows greater tolerance to lattice mismatch, making them promising for heterostructure formation and semiconductor integration. Atomically sharp epitaxial interfaces are necessary to improve performance and for device miniaturization. However, epitaxial growth of atomically sharp heterostructures of halide perovskites has not yet been achieved, owing to their high intrinsic ion mobility, which leads to interdiffusion and large junction widths, and owing to their poor chemical stability, which leads to decomposition of prior layers during the fabrication of subsequent layers. Therefore, understanding the origins of this instability and identifying effective approaches to suppress ion diffusion are of great importance22–26. Here we report an effective strategy to substantially inhibit in-plane ion diffusion in two-dimensional halide perovskites by incorporating rigid π-conjugated organic ligands. We demonstrate highly stable and tunable lateral epitaxial heterostructures, multiheterostructures and superlattices. Near-atomically sharp interfaces and epitaxial growth are revealed by low-dose aberration-corrected high-resolution transmission electron microscopy. Molecular dynamics simulations confirm the reduced heterostructure disorder and larger vacancy formation energies of the two-dimensional perovskites in the presence of conjugated ligands. These findings provide insights into the immobilization and stabilization of halide perovskite semiconductors and demonstrate a materials platform for complex and molecularly thin superlattices, devices and integrated circuits.  more » « less
Award ID(s):
1939986
NSF-PAR ID:
10191207
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature
Volume:
580
ISSN:
1476-4687
Page Range / eLocation ID:
614-620
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Heterostructures formed from interfaces between materials with complementary properties often display unconventional physics. Of especial interest are heterostructures formed with ferroelectric materials. These are mostly formed by combining thin layers in vertical stacks. Here the first in situ molecular beam epitaxial growth and scanning tunneling microscopy characterization of atomically sharp lateral heterostructures between a ferroelectric SnTe monolayer and a paraelectric PbTe monolayer are reported. The bias voltage dependence of the apparent heights of SnTe and PbTe monolayers, which are closely related to the type‐II band alignment of the heterostructure, is investigated. Remarkably, it is discovered that the ferroelectric domains in the SnTe surrounding a PbTe core form either clockwise or counterclockwise vortex‐oriented quadrant configurations. In addition, when there is a finite angle between the polarization and the interface, the perpendicular component of the polarization always points from SnTe to PbTe. Supported by first‐principles calculation, the mechanism of vortex formation and preferred polarization direction is identified in the interaction between the polarization, the space charge, and the strain effect at the horizontal heterointerface. The studies bring the application of 2D group‐IV monochalcogenides on in‐plane ferroelectric heterostructures a step closer.

     
    more » « less
  2. Van der Waals (vdW) epitaxial growth provides an efficient strategy to prepare heterostructures with atomically and electronically sharp interfaces. Herein, PbI2 was in situ thermally deposited onto exfoliated thin−layered CrOCl nanoflakes in high vacuum to fabricate vdW PbI2/CrOCl heterostructures. Optical microscopy, atomic force microscopy, X−ray diffraction, and temperature−dependent Raman spectroscopy were used to investigate the structural properties and phonon behaviors of the heterostructures. The morphology of PbI2 films on the CrOCl substrate obviously depended on the substrate temperature, changing from hemispherical granules to 2D nanoflakes with flat top surfaces. In addition, anomalous blueshift of the Ag1 and Au2 modes as the temperature increased in PbI2/CrOCl heterostructure was observed for the first time. Our results provide a novel material platform for the vdW heterostructure and a possible method for optimizing heterostructure growth behaviors. 
    more » « less
  3. Heterogeneous integration techniques allow the coupling of highly lattice-mismatched solid-state membranes, including semiconductors, oxides, and two-dimensional materials, to synergistically fuse the functionalities. The formation of heterostructures generally requires two processes: the combination of crystalline growth and a non-destructive lift-off/transfer process enables the formation of high-quality heterostructures. Although direct atomic interaction between the substrate and the target membrane ensures high-quality growth, the strong atomic bonds at the substrate/epitaxial film interface hinder the non-destructive separation of the target membrane from the substrate. Alternatively, a 2D material-coated compound semiconductor substrate can transfer the weakened (but still effective) surface potential field of the surface through the 2D material, allowing both high-quality epitaxial growth and non-destructive lift-off of the grown film. This Perspective reviews 2D/3D heterogeneous integration techniques, along with applications of III–V compound semiconductors and oxides. The advanced heterogeneous integration methods offer an effective method to produce various freestanding membranes for stackable heterostructures with unique functionalities that can be applied to novel electrical, optoelectronic, neuromorphic, and bioelectronic systems. 
    more » « less
  4. Abstract

    The growth of epitaxial semiconductors and oxides has long since revolutionized the electronics and optics fields, and continues to be exploited to uncover new physics stemming from quantum interactions. While the recent emergence of halide perovskites offers exciting new opportunities for a range of thin‐film electronics, the principles of epitaxy have yet to be applied to this new class of materials and the full potential of these materials is still not yet known. In this work, single‐domain inorganic halide perovskite epitaxy is demonstrated. This is enabled by reactive vapor phase deposition onto single crystal metal halide substrates with congruent ionic interactions. For the archetypical halide perovskite, cesium tin bromide, two epitaxial phases, a cubic phase and tetragonal phase, are uncovered which emerge via stoichiometry control that are both stabilized with vastly differing lattice constants and accommodated via epitaxial rotation. This epitaxial growth is exploited to demonstrate multilayer 2D quantum wells of a halide‐perovskite system. This work ultimately unlocks new routes to push halide perovskites to their full potential.

     
    more » « less
  5. Magnetic tunnel junctions (MTJs) with conventional bulk ferromagnets separated by a nonmagnetic insulating layer are key building blocks in spintronics for magnetic sensors and memory. A radically different approach of using atomically-thin van der Waals (vdW) materials in MTJs is expected to boost their figure of merit, the tunneling magnetoresistance (TMR), while relaxing the lattice-matching requirements from the epitaxial growth and supporting high-quality integration of dissimilar materials with atomically-sharp interfaces. We report TMR up to 192% at 10 K in all-vdW Fe3GeTe2/GaSe/Fe3GeTe2 MTJs. Remarkably, instead of the usual insulating spacer, this large TMR is realized with a vdW semiconductor GaSe. Integration of semiconductors into the MTJs offers energy-band-tunability, bias dependence, magnetic proximity effects, and spin-dependent optical-selection rules. We demonstrate that not only the magnitude of the TMR is tuned by the semiconductor thickness but also the TMR sign can be reversed by varying the bias voltages, enabling modulation of highly spin-polarized carriers in vdW semiconductors. 
    more » « less