Understanding hydrogen-bond interactions in self-assembled lattice materials is crucial for preparing such materials, but the role of hydrogen bonds (H bonds) remains unclear. To gain insight into H-bond interactions at the materials’ intrinsic spatial scale, we investigated ultrafast H-bond dynamics between water and biomimetic self-assembled lattice materials (composed of sodium dodecyl sulfate and β-cyclodextrin) in a spatially resolved manner. To accomplish this, we developed an infrared pump, vibrational sum-frequency generation (VSFG) probe hyperspectral microscope. With this hyperspectral imaging method, we were able to observe that the primary and secondary OH groups of β-cyclodextrin exhibit markedly different dynamics, suggesting distinct H-bond environments, despite being separated by only a few angstroms. We also observed another ultrafast dynamic reflecting a weakening and restoring of H bonds between bound water and the secondary OH of β-cyclodextrin, which exhibited spatial uniformity within self-assembled domains, but heterogeneity between domains. The restoration dynamics further suggest heterogeneous hydration among the self-assembly domains. The ultrafast nature and meso- and microscopic ordering of H-bond dynamics could contribute to the flexibility and crystallinity of the material––two critically important factors for crystalline lattice self-assemblies––shedding light on engineering intermolecular interactions for self-assembled lattice materials.
more » « less- PAR ID:
- 10191271
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 38
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 23385-23392
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)In this review, we discuss the recent developments and applications of vibrational sum-frequency generation (VSFG) microscopy. This hyperspectral imaging technique can resolve systems without inversion symmetry, such as surfaces, interfaces and noncentrosymmetric self-assembled materials, in the spatial, temporal, and spectral domains. We discuss two common VSFG microscopy geometries: wide-field and confocal point-scanning. We then introduce the principle of VSFG and the relationships between hyperspectral imaging with traditional spectroscopy, microscopy, and time-resolved measurements. We further highlight crucial applications of VSFG microscopy in self-assembled monolayers, cellulose in plants, collagen fibers, and lattice self-assembled biomimetic materials. In these systems, VSFG microscopy reveals relationships between physical properties that would otherwise be hidden without being spectrally, spatially, and temporally resolved. Lastly, we discuss the recent development of ultrafast transient VSFG microscopy, which can spatially measure the ultrafast vibrational dynamics of self-assembled materials. The review ends with an outlook on the technical challenges of and scientific potential for VSFG microscopy.more » « less
-
Janus base nanotubes are novel, self-assembled nanomaterials. Their original designs were inspired by DNA base pairs, and today a variety of chemistries has developed, distinguishing them as a new family of materials separate from DNA origami, carbon nanotubes, polymers, and lipids. This review article covers the principal examples of self-assembled Janus base nanotubes, which are driven by hydrogen-bond and π-π stacking interactions in aqueous environments. Specifically, self-complementary hydrogen bonds organize molecules into ordered arrays, forming macrocycles, while π-π interactions stack these structures to create tubular forms. This review elucidates the molecular interactions that govern the assembly of nanotubes and advances our understanding of nanoscale self-assembly in water.
-
Molecular dynamics (MD) simulations were used to investigate the structure and lifetimes of hydrogen bonds and auto dissociation via proton transfer in bulk water using a reactive and dissociative all-atom potential that has previously been shown to match a variety of water properties and proton transfer. Using the topological model, each molecule's donated and accepted hydrogen bonds were labeled relative to the other hydrogen bonds on neighboring waters, providing a description of the effect of these details on the structure, dynamics and autoionization of water molecules. In agreement with prior data, asymmetric bonding at the sub-100 femtosecond timescale is observed, as well as the existence of linear, bifurcated, and dangling hydrogen bonds. The lifetime of the H-bond, 2.1 ps, is consistent with experimental data, with short time librations on the order of femtoseconds. The angular correlation functions, the presence of a second shell water entering the first shell, and OH vibrational stretch frequencies were all consistent with experiment or ab initio calculations. The simulations show short-lived (femtoseconds) dissociation of a small fraction of water molecules followed by rapid recombination. The role of the other H-bonds to the acceptor and on the donor plays an important part in proton transfer between the molecules in auto dissociation and is consistent with the role of a strong electric field caused by local (first and second shell) waters on initiating dissociation. The number of H-bonds to the donor water is 4.3 per molecule in the simulations, consistent with previous data regarding the number of hydrogen bonds required to generate this strong local electric field that enhances dissociation. The continuous lifetime autocorrelation function of the H-bond for those molecules that experience dissociation is considerably longer than that for all molecules that show no proton transfer.more » « less
-
Hypothesis Understanding the microscopic driving force of water wetting is challenging and important for design of materials. The relations between structure, dynamics and hydrogen bonds of interfacial water can be investigated using molecular dynamics simulations. Experiments and simulations Contact angles at the alumina (0001) and ( ) surfaces are studied using both classical molecular dynamics simulations and experiments. To test the superhydrophilicity, the free energy cost of removing waters near the interfaces are calculated using the density fluctuations method. The strength of hydrogen bonds is determined by their lifetime and geometry. Findings Both surfaces are superhydrophilic and the (0001) surface is more hydrophilic. Interactions between surfaces and interfacial waters promote a templating effect whereby the latter are aligned in a pattern that follows the underlying lattice of the surfaces. Translational and rotational dynamics of interfacial water molecules are slower than in bulk water. Hydrogen bonds between water and both surfaces are asymmetric, water-to-aluminol ones are stronger than aluminol-to-water ones. Molecular dynamics simulations eliminate the impacts of surface contamination when measuring contact angles and the results reveal the microscopic origin of the macroscopic superhydrophilicity of alumina surfaces: strong water-to-aluminol hydrogen bonds.more » « less
-
Hydrogen bonding plays a critical role in the self-assembly of peptide amphiphiles (PAs). Herein, we studied the effect of replacing the amide linkage between the peptide and lipid portions of the PA with a urea group, which possesses an additional hydrogen bond donor. We prepared three PAs with the peptide sequence Phe-Phe-Glu-Glu (FFEE): two are amide-linked with hydrophobic tails of different lengths and the other possesses an alkylated urea group. The differences in the self-assembled structures formed by these PAs were assessed using diverse microscopies, nuclear magnetic resonance (NMR), and dichroism techniques. We found that the urea group influences the morphology and internal arrangement of the assemblies. Molecular dynamics simulations suggest that there are about 50% more hydrogen bonds in nanostructures assembled from the urea-PA than those assembled from the other PAs. Furthermore, in silico studies suggest the presence of urea−π stacking interactions with the phenyl group of Phe, which results in distinct peptide conformations in comparison to the amide-linked PAs. We then studied the effect of the urea modification on the mechanical properties of PA hydrogels. We found that the hydrogel made of the urea-PA exhibits increased stability and self-healing ability. In addition, it allows cell adhesion, spreading, and growth as a matrix. This study reveals that the inclusion of urea bonds might be useful in controlling the morphology, mechanical, and biological properties of self-assembled nanostructures and hydrogels formed by the PAs.more » « less