skip to main content


Title: Three-dimensional imaging through scattering media based on confocal diffuse tomography
Abstract

Optical imaging techniques, such as light detection and ranging (LiDAR), are essential tools in remote sensing, robotic vision, and autonomous driving. However, the presence of scattering places fundamental limits on our ability to image through fog, rain, dust, or the atmosphere. Conventional approaches for imaging through scattering media operate at microscopic scales or require a priori knowledge of the target location for 3D imaging. We introduce a technique that co-designs single-photon avalanche diodes, ultra-fast pulsed lasers, and a new inverse method to capture 3D shape through scattering media. We demonstrate acquisition of shape and position for objects hidden behind a thick diffuser (≈6 transport mean free paths) at macroscopic scales. Our technique, confocal diffuse tomography, may be of considerable value to the aforementioned applications.

 
more » « less
NSF-PAR ID:
10191316
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical imaging through scattering media has long been a challenge. Many approaches have been developed for focusing light or imaging objects through scattering media, but usually, they are either invasive, limited to stationary or slow-moving media, or require high-resolution cameras and complex algorithms to retrieve the images. By utilizing spatial–temporal encoded patterns (STEPs), we introduce a technique for the computation of imaging that overcomes these restrictions. With a single-pixel photodetector, we demonstrate non-invasive imaging through scattering media. This technique is insensitive to the motion of the media. Furthermore, we demonstrate that our image reconstruction algorithm is much more efficient than correlation-based algorithms for single-pixel imaging, which may allow fast imaging for applications with limited computing resources.

     
    more » « less
  2. Diffraction-limited optical imaging through scattering media has the potential to transform many applications such as airborne and space-based imaging (through the atmosphere), bioimaging (through skin and human tissue), and fiber-based imaging (through fiber bundles). Existing wavefront shaping methods can image through scattering media and other obscurants by optically correcting wavefront aberrations using high-resolution spatial light modulators—but these methods generally require (i) guidestars, (ii) controlled illumination, (iii) point scanning, and/or (iv) statics scenes and aberrations. We propose neural wavefront shaping (NeuWS), a scanning-free wavefront shaping technique that integrates maximum likelihood estimation, measurement modulation, and neural signal representations to reconstruct diffraction-limited images through strong static and dynamic scattering media without guidestars, sparse targets, controlled illumination, nor specialized image sensors. We experimentally demonstrate guidestar-free, wide field-of-view, high-resolution, diffraction-limited imaging of extended, nonsparse, and static/dynamic scenes captured through static/dynamic aberrations.

     
    more » « less
  3. Reflectance Mueller matrix (MM) polarimetry is being used to characterize biological media in multiple clinical applications. The origin of the reflectance polarimetric data is often unclear due to the impact of multiple scattering and tissue heterogeneity. We have developed a new, to the best of our knowledge, multimodal imaging technique combining MM reflectance, MM digital confocal imaging, and co-registered nonlinear microscopy techniques. The instrument unveils the origin of reflectance polarimetric signature in terms of confocal reflectance data. The reconstructed reflected MM demonstrates the capability of our method to provide depth-resolved 3D polarization response from complex biological media in terms of depolarization, retardance, and orientation parameters.

     
    more » « less
  4. Coherent imaging through scatter is a challenging task. Both model-based and data-driven approaches have been explored to solve the inverse scattering problem. In our previous work, we have shown that a deep learning approach can make high-quality and highly generalizable predictions through unseen diffusers. Here, we propose a new deep neural network model that is agnostic to a broader class of perturbations including scatterer change, displacements, and system defocus up to 10× depth of field. In addition, we develop a new analysis framework for interpreting the mechanism of our deep learning model and visualizing its generalizability based on an unsupervised dimension reduction technique. We show that our model can unmix the scattering-specific information and extract the object-specific information and achieve generalization under different scattering conditions. Our work paves the way to arobustandinterpretabledeep learning approach to imaging through scattering media.

     
    more » « less
  5. Imaging through scattering media is challenging since the signal to noise ratio (SNR) of the reflection can be heavily reduced by scatterers. Single-pixel detectors (SPD) with high sensitivities offer compelling advantages for sensing such weak signals. In this paper, we focus on the use of ghost imaging to resolve 2D spatial information using just an SPD. We prototype a polarimetric ghost imaging system that suppresses backscattering from volumetric media and leverages deep learning for fast reconstructions. In this work, we implement ghost imaging by projecting Hadamard patterns that are optimized for imaging through scattering media. We demonstrate good quality reconstructions in highly scattering conditions using a 1.6% sampling rate.

     
    more » « less