Assessing potential for diagenetic overprinting of climatic signals in benthic foraminifera: Preliminary results. Robert K. Poirier, Reinhard Kozdon, Maureen Raymo, Morgan Schaller Benthic foraminiferal stable isotope records (δ18O, δ13C) are the most common paleoclimate records produced to date, which capture changes in temperature, ice volume, and the global carbon system on orbital to sub-millennial timescales. General relationships between deep sea δ18O and sea level have long been established, and more recent paired δ18O and Mg/Ca records seek to disentangle the temperature and ice volume components of corresponding sea level records. However, the extent to which diagenesis may potentially alter the original isotopic signature recorded in tests of benthic foraminifera remains relatively undefined. We present preliminary results of a project focused on constraining the extent to which such diagenetic overprinting might alter sea level estimates based on records produced from modern to mid-Pliocene Cibicidoides and Uvigerina specimens. These include advanced imaging techniques (SEM, CL-spectroscopy), single shell stable isotope analyses (δ18O, δ13C), and chamber wall trace metal profiles (LA-ICPMS) paired with in situ δ18O analyses (SIMS). In addition, we present strict specimen screening criteria developed based on a new quantitative assessment of visual preservation in both individual foraminiferal tests and whole assemblages. http://forams2018.wp.st-andrews.ac.uk Session II: Advances in Foraminiferal Geochemistry Conveners: Jelle Bijma, Howard Spero Session Overview: http://forams2018.wp.st-andrews.ac.uk/program/
more »
« less
An astronomically dated record of Earth’s climate and its predictability over the last 66 million years
Much of our understanding of Earth’s past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states—Hothouse, Warmhouse, Coolhouse, Icehouse—are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
more »
« less
- Award ID(s):
- 1656960
- PAR ID:
- 10191436
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 369
- Issue:
- 6509
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 1383-1387
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Geochemical records generated from the calcite tests of benthic foraminifera, especially those of the generaCibicidoidesandUvigerina, provide the basis for proxy reconstructions of past climate. However, the extent to which benthic foraminifera are affected by postdepositional alteration is poorly constrained. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy‐based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well‐defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from late Pliocene to modern coretop samples (3.3–0 Ma), as well as spatially in the deep ocean. The FPI identifies the chemical composition of deep‐ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site. Additionally, we present stable isotope data (δ18O, δ13C) generated from individualCibicidoidesspecimens of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single‐test data further demonstrate that when incorporating carefully selected tests of only the highest preservation quality, robust paleorecords can be generated.more » « less
-
Geochemical records generated from the calcite shells (tests) of benthic foraminifera, especially those of the genera Cibicidoides and Uvigerina, provide the basis of the majority of long-term climate records in a variety of proxy reconstructions. However, the extent to which benthic foraminifera are affected by post-depositional alteration is poorly constrained in the literature. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy-based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well-defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from modern coretop samples to the Mid-Pliocene Warm Period (0.0-3.3 million year ago), and spacially in the deep ocean. The FPI identifies the chemical composition of deep ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site through time. Additionally, we present stable isotope data (d18O, d13C) generated from individual Cibicidoides tests of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single-test data also demonstrate the robustness of paleorecords generated from carefully selected specimens of only the highest quality of preservation.more » « less
-
Geochemical records generated from the calcite shells (tests) of benthic foraminifera, especially those of the genera Cibicidoides and Uvigerina, provide the basis of the majority of long-term climate records in a variety of proxy reconstructions. However, the extent to which benthic foraminifera are affected by post-depositional alteration is poorly constrained in the literature. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy-based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well-defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from modern coretop samples to the Mid-Pliocene Warm Period (0.0-3.3 million year ago), and spacially in the deep ocean. The FPI identifies the chemical composition of deep ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site through time. Additionally, we present stable isotope data (d18O, d13C) generated from individual Cibicidoides tests of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single-test data also demonstrate the robustness of paleorecords generated from carefully selected specimens of only the highest quality of preservation.more » « less
-
The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature gradient in past climates remains challenging due to the scarcity of appropriate proxy records and large proxy–model disagreements. Here, we develop methods leveraging an extensive compilation of planktonic foraminifera δ 18 O to reconstruct a continuous record of the latitudinal sea-surface temperature (SST) gradient over the last 95 million years (My). We find that latitudinal SST gradients ranged from 26.5 to 15.3 °C over a mean global SST range of 15.3 to 32.5 °C, with the highest gradients during the coldest intervals of time. From this relationship, we calculate a polar amplification factor (PAF; the ratio of change in >60° S SST to change in global mean SST) of 1.44 ± 0.15. Our results are closer to model predictions than previous proxy-based estimates, primarily because δ 18 O-based high-latitude SST estimates more closely track benthic temperatures, yielding higher gradients. The consistent covariance of δ 18 O values in low- and high-latitude planktonic foraminifera and in benthic foraminifera, across numerous climate states, suggests a fundamental constraint on multiple aspects of the climate system, linking deep-sea temperatures, the latitudinal SST gradient, and global mean SSTs across large changes in atmospheric CO 2 , continental configuration, oceanic gateways, and the extent of continental ice sheets. This implies an important underlying, internally driven predictability of the climate system in vastly different background states.more » « less
An official website of the United States government
