Geochemical records generated from the calcite shells (tests) of benthic foraminifera, especially those of the genera Cibicidoides and Uvigerina, provide the basis of the majority of long-term climate records in a variety of proxy reconstructions. However, the extent to which benthic foraminifera are affected by post-depositional alteration is poorly constrained in the literature. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy-based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well-defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from modern coretop samples to the Mid-Pliocene Warm Period (0.0-3.3 million year ago), and spacially in the deep ocean. The FPI identifies the chemical composition of deep ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site through time. Additionally, we present stable isotope data (d18O, d13C) generated from individual Cibicidoides tests of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single-test data also demonstrate the robustness of paleorecords generated from carefully selected specimens of only the highest quality of preservation.
more »
« less
Assessing potential for diagenetic overprinting of climatic signals in benthic foraminifera: Preliminary results.
Assessing potential for diagenetic overprinting of climatic signals in benthic foraminifera: Preliminary results. Robert K. Poirier, Reinhard Kozdon, Maureen Raymo, Morgan Schaller Benthic foraminiferal stable isotope records (δ18O, δ13C) are the most common paleoclimate records produced to date, which capture changes in temperature, ice volume, and the global carbon system on orbital to sub-millennial timescales. General relationships between deep sea δ18O and sea level have long been established, and more recent paired δ18O and Mg/Ca records seek to disentangle the temperature and ice volume components of corresponding sea level records. However, the extent to which diagenesis may potentially alter the original isotopic signature recorded in tests of benthic foraminifera remains relatively undefined. We present preliminary results of a project focused on constraining the extent to which such diagenetic overprinting might alter sea level estimates based on records produced from modern to mid-Pliocene Cibicidoides and Uvigerina specimens. These include advanced imaging techniques (SEM, CL-spectroscopy), single shell stable isotope analyses (δ18O, δ13C), and chamber wall trace metal profiles (LA-ICPMS) paired with in situ δ18O analyses (SIMS). In addition, we present strict specimen screening criteria developed based on a new quantitative assessment of visual preservation in both individual foraminiferal tests and whole assemblages. http://forams2018.wp.st-andrews.ac.uk Session II: Advances in Foraminiferal Geochemistry Conveners: Jelle Bijma, Howard Spero Session Overview: http://forams2018.wp.st-andrews.ac.uk/program/
more »
« less
- Award ID(s):
- 1658230
- PAR ID:
- 10194362
- Date Published:
- Journal Name:
- FORAM2018
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Geochemical records generated from the calcite shells (tests) of benthic foraminifera, especially those of the genera Cibicidoides and Uvigerina, provide the basis of the majority of long-term climate records in a variety of proxy reconstructions. However, the extent to which benthic foraminifera are affected by post-depositional alteration is poorly constrained in the literature. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy-based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well-defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from modern coretop samples to the Mid-Pliocene Warm Period (0.0-3.3 million year ago), and spacially in the deep ocean. The FPI identifies the chemical composition of deep ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site through time. Additionally, we present stable isotope data (d18O, d13C) generated from individual Cibicidoides tests of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single-test data also demonstrate the robustness of paleorecords generated from carefully selected specimens of only the highest quality of preservation.more » « less
-
Abstract Geochemical records generated from the calcite tests of benthic foraminifera, especially those of the generaCibicidoidesandUvigerina, provide the basis for proxy reconstructions of past climate. However, the extent to which benthic foraminifera are affected by postdepositional alteration is poorly constrained. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy‐based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well‐defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from late Pliocene to modern coretop samples (3.3–0 Ma), as well as spatially in the deep ocean. The FPI identifies the chemical composition of deep‐ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site. Additionally, we present stable isotope data (δ18O, δ13C) generated from individualCibicidoidesspecimens of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single‐test data further demonstrate that when incorporating carefully selected tests of only the highest preservation quality, robust paleorecords can be generated.more » « less
-
With the threat of rising temperatures, the Atlantic Meridional Overturning Circulation (AMOC) has been predicted to slow down or stop entirely, potentially exacerbating climate dysregulation in the Atlantic region. This project looks to the geologically recent past, to examine how much and in what way Atlantic ocean circulation has fluctuated over the last ~10,000 years. From IODP expedition 397, we processed 33 samples from site U1586, the sediment core at the greatest depth from the Iberian Margin. Stable isotope analysis of benthic foraminifera microfossils found in these sediment cores is a widely used technique for reconstructing past ocean circulation patterns; δ13C is a tracer for water masses, and δ18O is a proxy for sea temperature and land ice coverage. We searched specifically for Cibicidoides wuellerstorfi foraminifera and used mass spectrometry to find their values of δ13C and δ18O throughout the time-series. Our analyses of the stable isotopes generally indicate a warm climate and strong AMOC activity throughout the Holocene. Within the time interval 3.5-2.4 ka, stable oxygen isotope analysis shows a deep water temperature change from warmer to colder conditions. The lowest δ13C value occurs within that time interval; after δ18O values dropped at 3.5 ka, and gradually started increasing, the δ13C decreased significantly at 2.8 ka. The fact that the lowest δ13C value coincides with a 1,000 year period of deep water temperature change shown in the δ18O record suggests a link between climate change and AMOC activity in the past, and supports predictions for the impact that current climate change may have on AMOC in the future.more » « less
-
Two collocal cores were recovered at approx. 542 meters depth in the Bahamas side of the Florida Straits. Benthic foraminifera species Planulina ariminensis and Hoeglundina elegans, as well as Globobulimina spp., were picked from the greater-than 250-micron size fraction. Mass spectrometry methods were used to analyze P. ariminensis and Globobulimina spp. tests for carbon and oxygen isotopic ratios while H. elegans tests were analyzed for the cadmium/calcium, magnesium/calcium, and lithium/calcium ratios. The records extend from the Late Holocene to the Penultimate Glacial Maximum (Marine Isotope Stage [MIS] 6), with high sedimentation rates during peak interglacial periods (MIS 1 and 5e). Elemental ratios were measured by reductively and oxidatively cleaning the samples following Boyle and Rosenthal (1996), and then using a Thermo Finnigan Element2 Magnetic Sector Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) at the Institute of Alpine and Arctic Research, University of Colorado, Boulder (INSTAAR) according to the methods of Marchitto (2006).Stable oxygen and carbon isotopic ratio data (δ18O and δ13C, respectively) for all samples of P. ariminensis and 51 out of 70 total samples of Globobulimina spp. were acquired using a Thermo MAT 253 with Kiel carbonate preparation device at the Georgia Institute of Technology (GT). 19 replicate samples of Globobulimina were analyzed at the University of Arizona with the same methods.The temperature reconstruction uses the Mg/Li-based calibration proposed by Marchitto et al. (2018)The oxygen content reconstruction uses the benthic foraminiferal epifaunal-infaunal δ13C gradient proxy, specifically the recently updated calibration described in Hoogakker et al. (2025).more » « less
An official website of the United States government

