Humans can recognize their whole-body movements even when displayed as dynamic dot patterns. The sparse depiction of whole-body movements, coupled with a lack of visual experience watching ourselves in the world, has long implicated nonvisual mechanisms to self-action recognition. Using general linear modeling and multivariate analyses on human brain imaging data from male and female participants, we aimed to identify the neural systems for this ability. First, we found that cortical areas linked to motor processes, including frontoparietal and primary somatomotor cortices, exhibit greater engagement and functional connectivity when recognizing self-generated versus other-generated actions. Next, we show that these regions encode self-identity based on motor familiarity, even after regressing out idiosyncratic visual cues using multiple regression representational similarity analysis. Last, we found the reverse pattern for unfamiliar individuals: encoding localized to occipitotemporal visual regions. These findings suggest that self-awareness from actions emerges from the interplay of motor and visual processes.
more »
« less
PolarTag: Invisible Data with Light Polarization
Visual tags (e.g., barcodes, QR codes) are ubiquitous in modern day life, though they rely on obtrusive geometric patterns to encode data, degrading the overall user experience. We propose a new paradigm of passive visual tags which utilizes light polarization to imperceptibly encode data using cheap, widely-available components. The tag and its data can be extracted from background scenery using off-the-shelf cameras with inexpensive LCD shutters attached atop camera lenses. We examine the feasibility of this design with real-world experiments. Initial results show zero bit errors at distances up to 3.0~m, an angular-detection range of \ang110, and robustness to manifold ambient light and occlusion scenarios.
more »
« less
- PAR ID:
- 10191708
- Date Published:
- Journal Name:
- HotMobile '20: The 21st International Workshop on Mobile Computing Systems and Applications
- Page Range / eLocation ID:
- 74 to 79
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In-situ visual observations of marine organisms is crucial to developing behavioural understandings and their relations to their surrounding ecosystem. Typically, these observations are collected via divers, tags, and remotely-operated or human-piloted vehicles. Recently, however, autonomous underwater vehicles equipped with cameras and embedded computers with GPU capabilities are being developed for a variety of applications, and in particular, can be used to supplement these existing data collection mechanisms where human operation or tags are more difficult. Existing approaches have focused on using fully-supervised tracking methods, but labelled data for many underwater species are severely lacking. Semi-supervised trackers may offer alternative tracking solutions because they require less data than fully-supervised counterparts. However, because there are not existing realistic underwater tracking datasets, the performance of semi-supervised tracking algorithms in the marine domain is not well understood. To better evaluate their performance and utility, in this paper we provide (1) a novel dataset specific to marine animals located at http://warp.whoi.edu/vmat/, (2) an evaluation of state-of-the-art semi-supervised algorithms in the context of underwater animal tracking, and (3) an evaluation of real-world performance through demonstrations using a semi-supervised algorithm on-board an autonomous underwater vehicle to track marine animals in the wild.more » « less
-
Recommending suitable tags for online textual content is a key building block for better content organization and consumption. In this paper, we identify three pillars that impact the accuracy of tag recommendation: (1) sequential text modeling meaning that the intrinsic sequential ordering as well as different areas of text might have an important implication on the corresponding tag(s) , (2) tag correlation meaning that the tags for a certain piece of textual content are often semantically correlated with each other, and (3) content-tag overlapping meaning that the vocabularies of content and tags are overlapped. However, none of the existing methods consider all these three aspects, leading to a suboptimal tag recommendation. In this paper, we propose an integral model to encode all the three aspects in a coherent encoder-decoder framework. In particular, (1) the encoder models the semantics of the textual content via Recurrent Neural Networks with the attention mechanism, (2) the decoder tackles the tag correlation with a prediction path, and (3) a shared embedding layer and an indicator function across encoder-decoder address the content-tag overlapping. Experimental results on three realworld datasets demonstrate that the proposed method significantly outperforms the existing methods in terms of recommendation accuracy.more » « less
-
Over the past decade, there has been a significant increase in the development of visual analytics systems dedicated to addressing urban issues. These systems distill intricate urban analysis workflows into intuitive, interactive visual representations and interfaces, enabling users to explore, understand, and derive insights from large and complex data, including street-level imagery, street networks, and building geometries. Developing urban visual analytics systems, however, is a challenging endeavor that requires considerable programming expertise and interaction between various multidisciplinary stakeholders. This situation often leads to monolithic and isolated prototypes that are hard to reproduce, combine, or extend. Concurrently, there has been an increase in the availability of general and urban-specific toolkits, frameworks, and authoring tools that are open source and abstract away the need to implement low-level visual analytics functionalities. This paper provides a hierarchical taxonomy of urban visual analytics systems to contextualize how they are usually designed, implemented, and evaluated. We develop this taxonomy across three distinct levels (i.e., dimensions, categories, and tags), juxtaposing visualization with analytics, data, and system dimensions. We then assess the extent to which current open-source toolkits, frameworks, and authoring tools can effectively support the development of components tailored to urban visual analytics, identifying their strengths and limitations in addressing the unique challenges posed by urban data. In doing so, we offer a roadmap that can guide the effective employment of existing resources and chart a pathway for developing and refining future systemsmore » « less
-
RFID technologies are making their way into numerous applications, including inventory management, supply chain, product tracking, transportation, logistics, etc. One important application is to automatically detect anomalies in RFID systems, such as missing tags, unknown tags, or cloned tags due to theft, management error, or targeted attacks. Existing solutions are all designed to detect a certain type of RFID anomalies, but lack a general functionality for detecting different types of anomalies. This paper attempts to propose a general framework for anomaly detection in RFID systems, thereby reducing the complexity for readers and tags to implement different anomaly-detection protocols. We introduce a new concept of differential Bloom filter (DBF), which turns physical-layer signal data into a segmented Bloom filter that encodes the IDs of abnormal tags. As a case study, we propose a protocol that builds DBF for identifying all missing tags in an efficient way. We implement a prototype for missing-tag identification using USRP and WISP tags to verify the effectiveness our protocol, and use large-scale simulations for performance evaluation. The results show that our solution can significantly improve time efficiency, when comparing with the best existing work.more » « less
An official website of the United States government

