skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PolarTag: Invisible Data with Light Polarization
Visual tags (e.g., barcodes, QR codes) are ubiquitous in modern day life, though they rely on obtrusive geometric patterns to encode data, degrading the overall user experience. We propose a new paradigm of passive visual tags which utilizes light polarization to imperceptibly encode data using cheap, widely-available components. The tag and its data can be extracted from background scenery using off-the-shelf cameras with inexpensive LCD shutters attached atop camera lenses. We examine the feasibility of this design with real-world experiments. Initial results show zero bit errors at distances up to 3.0~m, an angular-detection range of \ang110, and robustness to manifold ambient light and occlusion scenarios.  more » « less
Award ID(s):
1822819 1919647
PAR ID:
10191708
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
HotMobile '20: The 21st International Workshop on Mobile Computing Systems and Applications
Page Range / eLocation ID:
74 to 79
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Humans can recognize their whole-body movements even when displayed as dynamic dot patterns. The sparse depiction of whole-body movements, coupled with a lack of visual experience watching ourselves in the world, has long implicated nonvisual mechanisms to self-action recognition. Using general linear modeling and multivariate analyses on human brain imaging data from male and female participants, we aimed to identify the neural systems for this ability. First, we found that cortical areas linked to motor processes, including frontoparietal and primary somatomotor cortices, exhibit greater engagement and functional connectivity when recognizing self-generated versus other-generated actions. Next, we show that these regions encode self-identity based on motor familiarity, even after regressing out idiosyncratic visual cues using multiple regression representational similarity analysis. Last, we found the reverse pattern for unfamiliar individuals: encoding localized to occipitotemporal visual regions. These findings suggest that self-awareness from actions emerges from the interplay of motor and visual processes. 
    more » « less
  2. Abstract In-situ visual observations of marine organisms is crucial to developing behavioural understandings and their relations to their surrounding ecosystem. Typically, these observations are collected via divers, tags, and remotely-operated or human-piloted vehicles. Recently, however, autonomous underwater vehicles equipped with cameras and embedded computers with GPU capabilities are being developed for a variety of applications, and in particular, can be used to supplement these existing data collection mechanisms where human operation or tags are more difficult. Existing approaches have focused on using fully-supervised tracking methods, but labelled data for many underwater species are severely lacking. Semi-supervised trackers may offer alternative tracking solutions because they require less data than fully-supervised counterparts. However, because there are not existing realistic underwater tracking datasets, the performance of semi-supervised tracking algorithms in the marine domain is not well understood. To better evaluate their performance and utility, in this paper we provide (1) a novel dataset specific to marine animals located athttp://warp.whoi.edu/vmat/, (2) an evaluation of state-of-the-art semi-supervised algorithms in the context of underwater animal tracking, and (3) an evaluation of real-world performance through demonstrations using a semi-supervised algorithm on-board an autonomous underwater vehicle to track marine animals in the wild. 
    more » « less
  3. Recommending suitable tags for online textual content is a key building block for better content organization and consumption. In this paper, we identify three pillars that impact the accuracy of tag recommendation: (1) sequential text modeling meaning that the intrinsic sequential ordering as well as different areas of text might have an important implication on the corresponding tag(s) , (2) tag correlation meaning that the tags for a certain piece of textual content are often semantically correlated with each other, and (3) content-tag overlapping meaning that the vocabularies of content and tags are overlapped. However, none of the existing methods consider all these three aspects, leading to a suboptimal tag recommendation. In this paper, we propose an integral model to encode all the three aspects in a coherent encoder-decoder framework. In particular, (1) the encoder models the semantics of the textual content via Recurrent Neural Networks with the attention mechanism, (2) the decoder tackles the tag correlation with a prediction path, and (3) a shared embedding layer and an indicator function across encoder-decoder address the content-tag overlapping. Experimental results on three realworld datasets demonstrate that the proposed method significantly outperforms the existing methods in terms of recommendation accuracy. 
    more » « less
  4. Over the past decade, there has been a significant increase in the development of visual analytics systems dedicated to addressing urban issues. These systems distill intricate urban analysis workflows into intuitive, interactive visual representations and interfaces, enabling users to explore, understand, and derive insights from large and complex data, including street-level imagery, street networks, and building geometries. Developing urban visual analytics systems, however, is a challenging endeavor that requires considerable programming expertise and interaction between various multidisciplinary stakeholders. This situation often leads to monolithic and isolated prototypes that are hard to reproduce, combine, or extend. Concurrently, there has been an increase in the availability of general and urban-specific toolkits, frameworks, and authoring tools that are open source and abstract away the need to implement low-level visual analytics functionalities. This paper provides a hierarchical taxonomy of urban visual analytics systems to contextualize how they are usually designed, implemented, and evaluated. We develop this taxonomy across three distinct levels (i.e., dimensions, categories, and tags), juxtaposing visualization with analytics, data, and system dimensions. We then assess the extent to which current open-source toolkits, frameworks, and authoring tools can effectively support the development of components tailored to urban visual analytics, identifying their strengths and limitations in addressing the unique challenges posed by urban data. In doing so, we offer a roadmap that can guide the effective employment of existing resources and chart a pathway for developing and refining future systems 
    more » « less
  5. Abstract Visible-light and infrared-light persistent phosphors are extensively studied and are being used as self-sustained glowing tags in darkness. In contrast, persistent phosphors for higher-energy, solar-blind ultraviolet-C wavelengths (200–280 nm) are lacking. Also, persistent tags working in bright environments are not available. Here we report five types of Pr3+-doped silicates (melilite, cyclosilicate, silicate garnet, oxyorthosilicate, and orthosilicate) ultraviolet-C persistent phosphors that can act as self-sustained glowing tags in bright environments. These ultraviolet-C persistent phosphors can be effectively charged by a standard 254 nm lamp and emit intense, long-lasting afterglow at 265–270 nm, which can be clearly monitored and imaged by a corona camera in daylight and room light. Besides thermal-stimulation, in bright environments, photo-stimulation also contributes to the afterglow emission and its contribution can be dominant when ambient light is strong. This study expands persistent luminescence research to the ultraviolet-C wavelengths and brings persistent luminescence applications to light. 
    more » « less