skip to main content

Title: Effectiveness of Crowd-Sourcing On-Demand Assistance from Teachers in Online Learning Platforms
It has been shown in multiple studies that expert-created on-demand assistance, such as hint messages, improves student learning in online learning environments. However, there are also evident that certain types of assistance may be detrimental to student learning. In addition, creating and maintaining on-demand assistance are hard and time-consuming. In 2017-2018 academic year, 132,738 distinct problems were assigned inside ASSISTments, but only 38,194 of those problems had on-demand assistance. In order to take on-demand assistance to scale, we needed a system that is able to gather new on-demand assistance and allows us to test and measure its effectiveness. Thus, we designed and deployed TeacherASSIST inside ASSISTments. TeacherASSIST allowed teachers to create on-demand assistance for any problems as they assigned those problems to their students. TeacherASSIST then redistributed on-demand assistance by one teacher to students outside of their classrooms. We found that teachers inside ASSISTments had created 40,292 new instances of assistance for 25,957 different problems in three years. There were 14 teachers who created more than 1,000 instances of on-demand assistance. We also conducted two large-scale randomized controlled experiments to investigate how on-demand assistance created by one teacher affected students outside of their classes. Students who received on-demand assistance for more » one problem resulted in significant statistical improvement on the next problem performance. The students' improvement in this experiment confirmed our hypothesis that crowd-sourced on-demand assistance was sufficient in quality to improve student learning, allowing us to take on-demand assistance to scale. « less
Authors:
;
Award ID(s):
1940236 1940093 1636782 1931523 1724889 1931419
Publication Date:
NSF-PAR ID:
10191834
Journal Name:
Proceedings of the Seventh ACM Conference on Learning @ Scale (L@S)
Page Range or eLocation-ID:
115-124
Sponsoring Org:
National Science Foundation
More Like this
  1. It has been shown in multiple studies that expert-created on demand assistance, such as hint messages, improves student learning in online learning environments. However, there are also evident that certain types of assistance may be detrimental to student learning. In addition, creating and maintaining on-demand assistance are hard and time-consuming. In 2017-2018 academic year, 132,738 distinct problems were assigned inside ASSISTments, but only 38,194 of those problems had on-demand assistance. In order to take on-demand assistance to scale, we needed a system that is able to gather new on-demand assistance and allows us to test and measure its effectiveness. Thus, we designed and deployed TeacherASSIST inside ASSISTments. TeacherASSIST allowed teachers to create on demand assistance for any problems as they assigned those problems to their students. TeacherASSIST then redistributed on-demand assistance by one teacher to students outside of their classrooms. We found that teachers inside ASSISTments had created 40,292 new instances of assistance for 25,957 different problems in three years. There were 14 teachers who created more than 1,000 instances of on-demand assistance. We also conducted two large-scale randomized controlled experiments to investigate how on-demand assistance created by one teacher affected students outside of their classes. Students who received on-demandmore »assistance for one problem resulted in significant statistical improvement on the next problem performance. The students’ improvement in this experiment confirmed our hypothesis that crowd-sourced on demand assistance was sufficient in quality to improve student learning, allowing us to take on-demand assistance to scale.« less
  2. The use of computer-based systems in classrooms has provided teachers with new opportunities in delivering content to students, supplementing instruction, and assessing student knowledge and comprehension. Among the largest benefits of these systems is their ability to provide students with feedback on their work and also report student performance and progress to their teacher. While computer-based systems can automatically assess student answers to a range of question types, a limitation faced by many systems is in regard to open-ended problems. Many systems are either unable to provide support for open-ended problems, relying on the teacher to grade them manually, or avoid such question types entirely. Due to recent advancements in natural language processing methods, the automation of essay grading has made notable strides. However, much of this research has pertained to domains outside of mathematics, where the use of open-ended problems can be used by teachers to assess students' understanding of mathematical concepts beyond what is possible on other types of problems. This research explores the viability and challenges of developing automated graders of open-ended student responses in mathematics. We further explore how the scale of available data impacts model performance. Focusing on content delivered through the ASSISTments online learningmore »platform, we present a set of analyses pertaining to the development and evaluation of models to predict teacher-assigned grades for student open responses.« less
  3. The use of computer-based systems in classrooms has provided teachers with new opportunities in delivering content to students, supplementing instruction, and assessing student knowledge and comprehension. Among the largest benefits of these systems is their ability to provide students with feedback on their work and also report student performance and progress to their teacher. While computer-based systems can automatically assess student answers to a range of question types, a limitation faced by many systems is in regard to open-ended problems. Many systems are either unable to provide support for open-ended problems, relying on the teacher to grade them manually, or avoid such question types entirely. Due to recent advancements in natural language processing methods, the automation of essay grading has made notable strides. However, much of this research has pertained to domains outside of mathematics, where the use of open-ended problems can be used by teachers to assess students’ understanding of mathematical concepts beyond what is possible on other types of problems. This research explores the viability and challenges of developing automated graders of open-ended student responses in mathematics. We further explore how the scale of available data impacts model performance. Focusing on content delivered through the ASSISTments online learningmore »platform, we present a set of analyses pertaining to the development and evaluation of models to predict teacher-assigned grades for student open responses.« less
  4. Teacher responses to student mathematical thinking (SMT) matter because the way in which teachers respond affects student learning. Although studies have provided important insights into the nature of teacher responses, little is known about the extent to which these responses take into account the potential of the instance of SMT to support learning. This study investigated teachers’ responses to a common set of instances of SMT with varied potential to support students’ mathematical learning, as well as the productivity of such responses. To examine variations in responses in relation to the mathematical potential of the SMT to which they are responding, we coded teacher responses to instances of SMT in a scenario-based interview. We did so using a scheme that analyzes who interacts with the thinking (Actor), what they are given the opportunity to do in those interactions (Action), and how the teacher response relates to the actions and ideas in the contributed SMT (Recognition). The study found that teachers tended to direct responses to the student who had shared the thinking, use a small subset of actions, and explicitly incorporate students’ actions and ideas. To assess the productivity of teacher responses, we first theorized the alignment of different aspectsmore »of teacher responses with our vision of responsive teaching. We then used the data to analyze the extent to which specific aspects of teacher responses were more or less productive in particular circumstances. We discuss these circumstances and the implications of the findings for teachers, professional developers, and researchers.« less
  5. Mobile devices are becoming a more common part of the education experience. Students can access their devices at any time to perform assignments or review material. Mobile apps can have the added advantage of being able to automatically grade student work and provide instantaneous feedback. However, numerous challenges remain in implementing effective mobile educational apps. One challenge is the small screen size of smartphones, which was a concern for a spatial visualization training app where students sketch isometric and orthographic drawings. This app was originally developed for iPads, but the wide prevalence of smartphones led to porting the software to iPhone and Android phones. The sketching assignments on a smartphone screen required more frequent zooming and panning, and one of the hypotheses of this study was that the educational effectiveness on smartphones was the same as on the larger screen sizes using iPad tablets. The spatial visualization mobile sketching app was implemented in a college freshman engineering graphics course to teach students how to sketch orthographic and isometric assignments. The app provides automatic grading and hint feedback to help students when they are stuck. Students in this pilot were assigned sketching problems as homework using their personal devices. Students weremore »administered a pre- and post- spatial visualization test (PSVT-R, a reliable, well-validated instrument) to assess learning gains. The trial analysis focuses on students who entered the course with limited spatial visualization experience as identified based on a score of ≤70% on the PSVT:R since students entering college with low PSVT:R scores are at higher risk of dropping out of STEM majors. Among these low-performing students, those who used the app showed significant progress: (71%) raised their test scores above 70% bringing them out of the at-risk range for dropping out of engineering. While the PSVT:R test has been well validated, there are benefits to developing alternative methods of assessing spatial visualization skills. We developed an assembly pre- and post- test based upon a timed Lego™ exercise. At the start of the quarter, students were timed to see how long it would take them to build small lego sets using only visual instructions. Students were timed again on a different lego set after completion of the spatial visualization app. One benefit of the test was that it illustrated to the engineering students a skill that could be perceived as more relevant to their careers, and thus possibly increased their motivation for spatial visualization training. In addition, it may be possible to adapt the assembly test to elementary school grade levels where the PSVT:R test would not be suitable. Preliminary results show that the average lego build times decreased significantly after using the mobile app, indicating an improvement in students’ spatial reasoning skills. A comparison will also be done between normalized completion times on the assembly test and the PSVT:R tests in order to see how the assembly test compares to the “gold standard”. In addition to the PSVT-R instrument, a survey was conducted to evaluate student usage and their impressions of the app. Students found the app engaging, easy to use, and something they would do whenever they had “a free moment”. 95% of the students recommended the app to a friend if they are struggling with spatial visualization skills. This paper will describe the implementation of the mobile spatial visualization sketching app in a large college classroom, and highlight the app’s impact in increasing self-efficacy in spatial visualization and sketching« less