- Award ID(s):
- 1658021
- PAR ID:
- 10191860
- Date Published:
- Journal Name:
- Geology
- Volume:
- 48
- Issue:
- 7
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 693 to 697
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Volcano inflation, for durations of months to years immediately following an eruption, has been observed at a number of volcanoes, including the 2011/12 eruption of Cordón Caulle, Chile. Such reinflation is often explained by replenishment of the magma reservoir from a deeper source. Whether and why that is the case remains uncertain in most instances, but the implications for renewed eruptive potential may be profound. Here, we posit redistribution of melt within a zoned magma reservoir consisting of a crystal rich mush overlain by an eruptible layer of crystal poor rhyolite as an alternate mechanism for reinflation. Such a zoned magma body is consistent with conceptual models for how crystal poor rhyolites form and with the presence of mafic enclaves within the Cordón Caulle rhyolite. The enclaves can be interpreted as pieces of mush entrained into the overlying rhyolite during its withdrawal from the reservoir. We test the hypothesis that melt from the inter-crystalline pores of the mush can redistribute by porous flow into the overlying crystal poor rhyolite, causing inflation after an eruption. We simulate the flow of melt within the zoned reservoir during and after eruption with a numerical model. As crystal poor rhyolite is erupted, magma pressure within the rhyolite layer above the mush decreases. Consequently, interstitial melt flows upward within the mush, toward the reduced pressure at the interface of mush and crystal poor rhyolite. The mush is treated as a poroelastic material, with interstitial melt flow governed by Darcy's law. Thus, the change in pressure caused by withdrawal from the overlying rhyolite diffuses downward into the mush as the interstitial melt flows upward. The change in pore pressure results in an elastic deformation of the mush matrix. Because pore pressure diffusivity is small, melt redistribution can persist for years after eruptive activity ends, leading to slow inflation compared to fast eruptive deflation. We predict a partial recovery of volume lost from the eruption. Reinflation occurs because the expansion of decompressing melt flowing from the mush into the crystal poor rhyolite exceeds compression of the poroelastic mush. For cases where the interstitial melt is moderately compressible due to exsolved volatiles, our model reproduces the deformation observed at Cordón Caulle.more » « less
-
SUMMARY The 2011–2012 eruption at Cordón Caulle in Chile produced crystal-poor rhyolitic magma with crystal-rich mafic enclaves whose interstitial glass is of identical composition to the host rhyolite. Eruptible rhyolites are thought to be genetically associated with crystal-rich magma mushes, and the enclaves within the Cordón Caulle rhyolite support the existence of a magma mush from which the erupted magma was derived. Moreover, towards the end of the 2011–2012 eruption, subsidence gave way to inflation that has on average been continuous through at least 2020. We hypothesize that magma segregation from a crystal mush could be the source of the observed inflation. Conceptually, magma withdrawal from a crystal-poor rhyolite reservoir caused its depressurization, which could have led to upward flow of interstitial melt within an underlying crystal mush, causing a new batch of magma to segregate and partially recharge the crystal-poor rhyolite body. Because the compressibility of the crystalline matrix of the mush is expected to be lower than that of the interstitial melt, which likely contains some fraction of volatile bubbles, this redistribution of melt would result in a net increase in volume of the system and in the observed inflation. We use numerical modelling of subsurface magma flow and storage to show under which conditions such a scenario is supported by geodetic and petrologic observations.
-
Abstract Recent multi‐channel seismic studies of fast spreading and hot‐spot influenced mid‐ocean ridges reveal magma bodies located beneath the mid‐crustal Axial Magma Lens (AML), embedded within the underlying crustal mush zone. We here present new seismic images from the Juan de Fuca Ridge that show reflections interpreted to be from vertically stacked magma lenses in a number of locations beneath this intermediate‐spreading ridge. The brightest reflections are beneath Northern Symmetric segment, from ∼46°42′‐52′N and Split Seamount, where a small magma body at local Moho depths is also detected, inferred to be a source reservoir for the stacked magma lenses in the crust above. The imaged magma bodies are sub‐horizontal, extend continuously for along‐axis lengths of ∼1–8 km, with the shallowest located at depths of ∼100–1,200 m below the AML, and are similar to sub‐AML bodies found at the East Pacific Rise. At both ridges, stacked sill‐like lenses are detected beneath only a small fraction of the ridge length examined and are inferred to mark local sites of higher melt flux and active replenishment from depth. The imaged magma lenses are focused in the upper part of the lower crust, which coincides with the most melt rich part of the crystal mush zone detected in other geophysical studies and where sub‐vertical fabrics are observed in geologic exposures of oceanic crust. We infer that the multi‐level magma accumulations are ephemeral and may result from porous flow and mush compaction, and that they can be tapped and drained during dike intrusion and eruption events.
-
Abstract Two distinct types of rare crystal-rich mafic enclaves have been identified in the rhyolite lava flow from the 2011–12 Cordón Caulle eruption (Southern Andean Volcanic Zone, SVZ). The majority of mafic enclaves are coarsely crystalline with interlocking olivine-clinopyroxene-plagioclase textures and irregular shaped vesicles filling the crystal framework. These enclaves are interpreted as pieces of crystal-rich magma mush underlying a crystal-poor rhyolitic magma body that has fed recent silicic eruptions at Cordón Caulle. A second type of porphyritic enclaves, with restricted mineral chemistry and spherical vesicles, represents small-volume injections into the rhyolite magma. Both types of enclaves are basaltic end-members (up to 9.3 wt% MgO and 50–53 wt% SiO 2 ) in comparison to enclaves erupted globally. The Cordón Caulle enclaves also have one of the largest compositional gaps on record between the basaltic enclaves and the rhyolite host at 17 wt% SiO 2 . Interstitial melt in the coarsely-crystalline enclaves is compositionally identical to their rhyolitic host, suggesting that the crystal-poor rhyolite magma was derived directly from the underlying basaltic magma mush through efficient melt extraction. We suggest the 2011–12 rhyolitic eruption was generated from a primitive basaltic crystal-rich mush that short-circuited the typical full range of magmatic differentiation in a single step.more » « less
-
Abstract The transcrustal, mush‐dominated magma storage paradigm, which posits liquid melt is heterogeneously distributed within a vertically extensive magma mush, differs significantly from classical geodetic models, where melt is stored within liquid‐dominant chambers within an elastic crust. Here, we present mechanical models consistent with transcrustal melt storage by separating the magmatic system into three domains: liquid melt lenses, surrounding crystal‐dominated poroelastic magma mush, and elastic crust. Our results indicate that pressure changes within the melt lens may induce surface displacements that approximate the displacements predicted by spheroidal pressure sources that mimic the geometry of the mush zone. Adopting constitutive parameters of the mush dependent on mush melt fraction, we show that a magma storage system will have an effective geometry inferred from surface displacements that smoothly transitions from the geometry of the melt lens to the geometry of the mush as mush melt fraction increases. This holds true across multiple storage zone geometries, including a “transcrustal” storage zone with a magma mush that extends deep in the crust. Accounting for the presence of a magma mush can lead to an increase in the estimated volume of injected or withdrawn magma (by several multiples) compared to values obtained using fully elastic models. Comparing erupted magma volumes to source volume changes allows for an estimation of magma compressibility; we show the presence of a mush can increase this estimated magma compressibility by up to approximately 50%, suggesting magmas may have higher bubble fraction than previous geodetically derived estimates.