skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Stacked Magma Lenses Beneath Mid‐Ocean Ridges: Insights From New Seismic Observations and Synthesis With Prior Geophysical and Geologic Findings
Abstract

Recent multi‐channel seismic studies of fast spreading and hot‐spot influenced mid‐ocean ridges reveal magma bodies located beneath the mid‐crustal Axial Magma Lens (AML), embedded within the underlying crustal mush zone. We here present new seismic images from the Juan de Fuca Ridge that show reflections interpreted to be from vertically stacked magma lenses in a number of locations beneath this intermediate‐spreading ridge. The brightest reflections are beneath Northern Symmetric segment, from ∼46°42′‐52′N and Split Seamount, where a small magma body at local Moho depths is also detected, inferred to be a source reservoir for the stacked magma lenses in the crust above. The imaged magma bodies are sub‐horizontal, extend continuously for along‐axis lengths of ∼1–8 km, with the shallowest located at depths of ∼100–1,200 m below the AML, and are similar to sub‐AML bodies found at the East Pacific Rise. At both ridges, stacked sill‐like lenses are detected beneath only a small fraction of the ridge length examined and are inferred to mark local sites of higher melt flux and active replenishment from depth. The imaged magma lenses are focused in the upper part of the lower crust, which coincides with the most melt rich part of the crystal mush zone detected in other geophysical studies and where sub‐vertical fabrics are observed in geologic exposures of oceanic crust. We infer that the multi‐level magma accumulations are ephemeral and may result from porous flow and mush compaction, and that they can be tapped and drained during dike intrusion and eruption events.

 
more » « less
Award ID(s):
1658199
PAR ID:
10359756
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
4
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Detailed images of the midcrustal magmatic system beneath the East Pacific Rise (8°20′–10°10′N) are obtained from 2‐D and 3‐D‐swath processing of along axis seismic data and are used to characterize properties of the axial crust, cross‐axis variations, and relationships with structural segmentation of the axial zone. Axial magma lens (AML) reflections are imaged beneath much of the ridge axis (mean depth 1,640 ± 185 m), as are deeper sub‐AML (SAML) reflections (brightest events ~100–800 m below AML). Local shallow regions in the AML underlie two regions of shallow seafloor depth from 9°40′–55′N and 8°26′–33′N. Enhanced magma replenishment at present beneath both sites is inferred and may be linked to nearby off‐axis volcanic chains. SAML reflections, which are observed primarily from 9°20′ to 10°05′N, indicate a finely segmented magma reservoir similar to the AML above, composed of subhorizontal, 2‐ to 7 km‐long AML segments, often with stepwise changes in reflector depth from one segment to the next. We infer that these melt bodies are related to short‐lived melt instability zones. In many locations including where seismic constraints are strongest the intermediate scale (~15–40 km) structural segmentation of the ridge axis identified in this region coincides with (1) changes in average thickness of layer 2A (by 10%–15%), (2) changes in average depth of AML (<100 m), and (3) with the spacing of punctuated low velocity zones mapped in the uppermost mantle. The ~6 km dominant length of multiple AML segments within each of the larger structural segments may reflect the spacing of local sites of ascending magma from discrete melt reservoirs pooled beneath the crust.

     
    more » « less
  2. Abstract Magmatic systems are composed of melt accumulations and crystal mush that evolve with melt transport, contributing to igneous processes, volcano dynamics, and eruption triggering. Geophysical studies of active volcanoes have revealed details of shallow-level melt reservoirs, but little is known about fine-scale melt distribution at deeper levels dominated by crystal mush. Here, we present new seismic reflection images from Axial Seamount, northeastern Pacific Ocean, revealing a 3–5-km-wide conduit of vertically stacked melt lenses, with near-regular spacing of 300–450 m extending into the inferred mush zone of the mid-to-lower crust. This column of lenses underlies the shallowest melt-rich portion of the upper-crustal magma reservoir, where three dike intrusion and eruption events initiated. The pipe-like zone is similar in geometry and depth extent to the volcano inflation source modeled from geodetic records, and we infer that melt ascent by porous flow focused within the melt lens conduit led to the inflation-triggered eruptions. The multiple near-horizontal lenses are interpreted as melt-rich layers formed via mush compaction, an interpretation supported by one-dimensional numerical models of porous flow in a viscoelastic matrix. 
    more » « less
  3. Abstract

    We invertPg,PmP, andPntraveltimes from an active‐source, multiscale tomography experiment to constrain the three‐dimensional isotropic and anisotropicPwave velocity structure of the topmost oceanic mantle and crust and crustal thickness variations beneath the entire Endeavour segment of the Juan de Fuca Ridge. The isotropic velocity structure is characterized by a semicontinuous, narrow (5‐km‐wide) crustal low‐velocity volume that tracks the sinuous ridge axis. Across the Moho, the low‐velocity volume abruptly broadens to approximately 20 km in width and displays a north‐south linear trend that connects the two overlapping spreading centers bounding the segment. From the seismic results, we estimate the thermal structure and melt distribution beneath the Endeavour segment. The thermal structure indicates that the observed skew, or lateral offset, between the crustal and mantle magmatic systems is a consequence of differences in mechanisms of heat transfer at crustal and mantle depths, with the crust and mantle dominated by advection and conduction, respectively. Melt volume estimates exhibit significant along‐axis variations that coincide with the observed skew between the mantle and crustal magmatic systems, with sites of enhanced crustal melt volumes and vigorous hydrothermal activity corresponding to regions where the mantle and crustal magmatic systems are vertically aligned. These results contradict models of ridge segmentation that predict enhanced and reduced melt supply beneath the segment center and ends, respectively. Our results instead support a model in which segment‐scale skew between the crustal and mantle magmatic systems governs magmatic and hydrothermal processes at mid‐ocean ridges.

     
    more » « less
  4. Abstract

    Oceanic lithosphere, which forms two‐thirds of Earth's surface, is generated at mid‐ocean ridge spreading centers. Yet the internal structure of the lithosphere is not well characterized and often considered to be homogeneous relative to the structure of continental lithosphere. While geophysical observations clearly delineate the crust‐mantle boundary and the lithosphere‐asthenopshere boundary, other seismic anomalies known as mid‐lithosphere discontinuities (MLDs) have been challenging to detect and poorly constrained. Here we present melt transport models applied to the mid‐ocean ridge system that indicate MLDs are a widespread fundamental feature of oceanic lithosphere. In our models, some melt generated from decompression melting is frozen back into the lithosphere, forming a layered refertilization pattern. These refertilized layers are due to the stacked horizontal layering pattern of melt pooling beneath the freezing front. If the recrystallized melt is incorporated into the lithosphere as mafic lenses, the predicted seismic velocity is compatible with observations.

     
    more » « less
  5. Abstract

    Fissures and faults provide insight into how plate separation is accommodated by magmatism and brittle deformation during crustal accretion. Although fissure and fault geometry can be used to quantify the spreading process at mid‐ocean ridges, accurate measurements are rare due to insufficiently detailed mapping data. Here, fissures and faults at the fast‐spreading 9°50′N segment of the East Pacific Rise were mapped using bathymetric data collected at 1‐m horizontal resolution by autonomous underwater vehicleSentry. Fault dip estimates from the bathymetric data were calibrated using co‐registered near‐bottom imagery and depth transects acquired by remotely operated vehicleJason. Fissures are classified as either eruptive or non‐eruptive (i.e., cracks). Tectonic strain estimated from corrected fault heaves suggests that faulting plays a negligible role in the plate separation on crust younger than 72 kyr (<4 km from the ridge axis). Pre‐ and post‐eruption surveys show that most fissures were reactivated during the eruptions in 2005–2006. Variable eruptive fissure geometry could be explained by the frequency with which each fissure is reactivated and partially infilled. Fissure swarms and lava plateaus in low‐relief areas >2 km from the ridge are spatially associated with off‐axis lower‐crustal magma lenses identified in multichannel seismic data. Deep, closely spaced fissures overlie a relatively shallow portion of the axial magma lens. The width of on‐axis fissures and inferred subsurface dike geometry imply a ∼9‐year long diking recurrence interval to fully accommodate plate spreading, which is broadly consistent with cycle intervals obtained from estimates of melt extraction rates, eruption volumes, and spreading rate.

     
    more » « less