Abstract Beneath oceanic spreading centres, the lithosphere–asthenosphere boundary (LAB) acts as a permeability barrier that focuses the delivery of melt from deep within the mantle towards the spreading axis1. At intermediate-spreading to fast-spreading ridge crests, the multichannel seismic reflection technique has imaged a nearly flat, 1–2-km-wide axial magma lens (AML)2that defines the uppermost section of the LAB3, but the nature of the LAB deeper into the crust has been more elusive, with some clues gained from tomographic images, providing only a diffuse view of a wider halo of lower-velocity material seated just beneath the AML4. Here we present 3D seismic reflection images of the LAB extending deep (5–6 km) into the crust beneath Axial volcano, located at the intersection of the Juan de Fuca Ridge and the Cobb–Eickelberg hotspot. The 3D shape of the LAB, which is coincident with a thermally controlled magma assimilation front, focuses hotspot-related and mid-ocean-spreading-centre-related magmatism towards the centre of the volcano, controlling both eruption and hydrothermal processes and the chemical composition of erupted lavas5. In this context, the LAB can be viewed as the upper surface of a ‘magma domain’, a volume within which melt bodies reside (replacing the concept of a single ‘magma reservoir’)6. Our discovery of a funnel-shaped, crustal LAB suggests that thermally controlled magma assimilation could be occurring along this surface at other volcanic systems, such as Iceland.
more »
« less
Stacked Magma Lenses Beneath Mid‐Ocean Ridges: Insights From New Seismic Observations and Synthesis With Prior Geophysical and Geologic Findings
Abstract Recent multi‐channel seismic studies of fast spreading and hot‐spot influenced mid‐ocean ridges reveal magma bodies located beneath the mid‐crustal Axial Magma Lens (AML), embedded within the underlying crustal mush zone. We here present new seismic images from the Juan de Fuca Ridge that show reflections interpreted to be from vertically stacked magma lenses in a number of locations beneath this intermediate‐spreading ridge. The brightest reflections are beneath Northern Symmetric segment, from ∼46°42′‐52′N and Split Seamount, where a small magma body at local Moho depths is also detected, inferred to be a source reservoir for the stacked magma lenses in the crust above. The imaged magma bodies are sub‐horizontal, extend continuously for along‐axis lengths of ∼1–8 km, with the shallowest located at depths of ∼100–1,200 m below the AML, and are similar to sub‐AML bodies found at the East Pacific Rise. At both ridges, stacked sill‐like lenses are detected beneath only a small fraction of the ridge length examined and are inferred to mark local sites of higher melt flux and active replenishment from depth. The imaged magma lenses are focused in the upper part of the lower crust, which coincides with the most melt rich part of the crystal mush zone detected in other geophysical studies and where sub‐vertical fabrics are observed in geologic exposures of oceanic crust. We infer that the multi‐level magma accumulations are ephemeral and may result from porous flow and mush compaction, and that they can be tapped and drained during dike intrusion and eruption events.
more »
« less
- Award ID(s):
- 1658199
- PAR ID:
- 10359756
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 126
- Issue:
- 4
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Magmatic systems are composed of melt accumulations and crystal mush that evolve with melt transport, contributing to igneous processes, volcano dynamics, and eruption triggering. Geophysical studies of active volcanoes have revealed details of shallow-level melt reservoirs, but little is known about fine-scale melt distribution at deeper levels dominated by crystal mush. Here, we present new seismic reflection images from Axial Seamount, northeastern Pacific Ocean, revealing a 3–5-km-wide conduit of vertically stacked melt lenses, with near-regular spacing of 300–450 m extending into the inferred mush zone of the mid-to-lower crust. This column of lenses underlies the shallowest melt-rich portion of the upper-crustal magma reservoir, where three dike intrusion and eruption events initiated. The pipe-like zone is similar in geometry and depth extent to the volcano inflation source modeled from geodetic records, and we infer that melt ascent by porous flow focused within the melt lens conduit led to the inflation-triggered eruptions. The multiple near-horizontal lenses are interpreted as melt-rich layers formed via mush compaction, an interpretation supported by one-dimensional numerical models of porous flow in a viscoelastic matrix.more » « less
-
Deep‐crustal magma plumbing at arc volcanoes controls the volume, frequency, and composition of magma being transported to and stored in the upper crust. However, the mid‐to‐lower crust remains a challenging region to image. We explore the mid‐to‐lower crustal velocity structure beneath the Christiana‐Santorini‐Kolumbo Volcanic Field (CSKVF) to better understand how an established stratovolcano and flanking volcano (Santorini and Kolumbo) are fed through the mid‐to‐lower crust. We use active‐source seismic data to obtain a P‐wave velocity model of the crust below the CSKVF. We invert direct and reflected P phases to cover the entire depth extent of the crust and solve for the Moho interface depth. Our model requires a curved Moho interface representative of crustal thickening via underplating. Results show a highVpanomaly in the lower crust under Santorini and a mid‐crustal lowVpanomaly offset from both Santorini and Kolumbo. We find that accumulation of magma is located under the local extensional basin in the upper mid‐crust (<10 km) but is offset at deeper depths. We find evidence for melt storage at 11–13 km depth feeding volcanism at the Kolumbo volcanic chain. This melt is also a plausible source for the 2025 seismic swarm and dike intrusion. Resolution is limited in the mid‐crust below the Santorini caldera, leaving Santorini's mid‐crustal magma plumbing unconstrained. We think it likely that Santorini and Kolumbo have entirely separate crustal plumbing systems and mantle sources, but allow the possibility of a connection in the mid or lower crust.more » « less
-
Abstract We invertPg,PmP, andPntraveltimes from an active‐source, multiscale tomography experiment to constrain the three‐dimensional isotropic and anisotropicPwave velocity structure of the topmost oceanic mantle and crust and crustal thickness variations beneath the entire Endeavour segment of the Juan de Fuca Ridge. The isotropic velocity structure is characterized by a semicontinuous, narrow (5‐km‐wide) crustal low‐velocity volume that tracks the sinuous ridge axis. Across the Moho, the low‐velocity volume abruptly broadens to approximately 20 km in width and displays a north‐south linear trend that connects the two overlapping spreading centers bounding the segment. From the seismic results, we estimate the thermal structure and melt distribution beneath the Endeavour segment. The thermal structure indicates that the observed skew, or lateral offset, between the crustal and mantle magmatic systems is a consequence of differences in mechanisms of heat transfer at crustal and mantle depths, with the crust and mantle dominated by advection and conduction, respectively. Melt volume estimates exhibit significant along‐axis variations that coincide with the observed skew between the mantle and crustal magmatic systems, with sites of enhanced crustal melt volumes and vigorous hydrothermal activity corresponding to regions where the mantle and crustal magmatic systems are vertically aligned. These results contradict models of ridge segmentation that predict enhanced and reduced melt supply beneath the segment center and ends, respectively. Our results instead support a model in which segment‐scale skew between the crustal and mantle magmatic systems governs magmatic and hydrothermal processes at mid‐ocean ridges.more » « less
-
Abstract Oceanic lithosphere, which forms two‐thirds of Earth's surface, is generated at mid‐ocean ridge spreading centers. Yet the internal structure of the lithosphere is not well characterized and often considered to be homogeneous relative to the structure of continental lithosphere. While geophysical observations clearly delineate the crust‐mantle boundary and the lithosphere‐asthenopshere boundary, other seismic anomalies known as mid‐lithosphere discontinuities (MLDs) have been challenging to detect and poorly constrained. Here we present melt transport models applied to the mid‐ocean ridge system that indicate MLDs are a widespread fundamental feature of oceanic lithosphere. In our models, some melt generated from decompression melting is frozen back into the lithosphere, forming a layered refertilization pattern. These refertilized layers are due to the stacked horizontal layering pattern of melt pooling beneath the freezing front. If the recrystallized melt is incorporated into the lithosphere as mafic lenses, the predicted seismic velocity is compatible with observations.more » « less
An official website of the United States government
