The regionalized vertebral column is a hallmark of mammalian morphology and reflects functional differentiation of the vertebral regions. Mammalian vertebrae are serially homologous and morphologically patterened by Hox expression, but also vary in number and gross morphology across species. The trabecular bone inside vertebral centra is more plastic than gross vertebral bone, and structurally adapts to better withstand forces it experiences during life. However, the functional regionalization of vertebral trabecular bone is poorly examined. Are there trabecular "regions” reflecting the differing functions and in-vivo stress patterns of gross morphological vertebral regions? Or is trabecular morphology homogeneous throughout the spine, suggesting that differences in functional demands are borne exclusively by external characteristics? To address these questions, we collected μCT scans and linear measurements of cervical, thoracic, and lumbar vertebrae in four species of large shrews, including two species of the hero shrew Scutisorex, which has a highly modified vertebral column. We compared linear measurements and trabecular bone characteristics of the cranial and caudal ends of each centrum across species. To detect unique vertebral regions, we executed principal coordinates analysis and segmented regression on three versions of our data set: trabecular bone data only, external measurements only, and the two combined. We found that some regionalization is recovered using only trabecular bone data, but trabecular bone regions do not correspond exactly to gross vertebral regions. This reflects divergence between the functional signals of internal and external vertebral bone morphology, which should be further examined in a kinematic context.
more »
« less
Vertebral number and spinal regionalization in large shrews (Soricidae)
In addition to having unique extra articulations on its vertebrae, the hero shrew (Scutisorex) is unusual in having almost twice as many lumbar vertebrae as other shrews of its size. Other than being noted in descriptive literature, this increase in vertebral number has received little attention; there has been no investigation of how it might reflect the elusive function of the highly modified Scutisorex spine. Comparisons of individual vertebrae and whole-column characteristics between Scutisorex and other large shrews are also lacking, despite the fact that such studies could give insight into i) function of particular vertebral regions in shrews with and without external vertebral modifications, and ii) developmental patterns driving regional proportions. We collected μCT scans and linear measurements of cervical, thoracic, and lumbar vertebrae in two species of Scutisorex and three other species of large shrews. We compared a variety of linear vertebra measurements, and trabecular bone characteristics of each centrum, across species. Further, using this combined suite of measurements, we executed principal coordinates analysis and segmented regression to detect unique vertebral regions in each taxon. Our results show that relative to other large shrews, Scutisorex has a shorter thoracic region and longer lumbar region, and, despite having more dorsal vertebrae than other species, does not have a proportionally longer body length. Regionalization signals vary within and across the five species, but generally suggest that functional regions may not correspond exactly with traditionally recognized anatomical regions of the column, and that the extended lumbar region in Scutisorex may afford it an additional functional region.
more »
« less
- Award ID(s):
- 1811627
- PAR ID:
- 10191870
- Date Published:
- Journal Name:
- Integrative and comparative biology
- Volume:
- 60
- Issue:
- Supplement_1
- ISSN:
- 1557-7023
- Page Range / eLocation ID:
- e217
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Since their appearance in the fossil record 34 million years ago, modern cetaceans (dolphins, whales, and porpoises) have radiated into diverse habitats circumglobally, developing vast phenotypic variations among species. Traits such as skeletal morphology and ecologically linked behaviors denote swimming activity; trade-offs in flexibility and rigidity along the vertebral column determine patterns of caudal oscillation. Here, we categorized 10 species of cetaceans (families Delphinidae and Kogiidae; N = 21 animals) into functional groups based on vertebral centra morphology, swimming speeds, diving behavior, and inferred swimming patterns. We quantified trabecular bone mechanical properties (yield strength, apparent stiffness, and resilience) among functional groups and regions of the vertebral column (thoracic, lumbar, and caudal). We extracted 6 mm3 samples from vertebral bodies and tested them in compression in 3 orientations (rostrocaudal, dorsoventral, and mediolateral) at 2 mm min−1. Overall, bone from the pre-fluke/fluke boundary had the greatest yield strength and resilience, indicating that the greatest forces are translated to the tail during caudal oscillatory swimming. Group 1, composed of 5 shallow-diving delphinid species, had the greatest vertebral trabecular bone yield strength, apparent stiffness, and resilience of all functional groups. Conversely, Group 3, composed of 2 deep-diving kogiid species, had the least strong, stiff, and resilient bone, while Group 2 (3 deep-diving delphinid species) exhibited intermediate values. These data suggest that species that incorporate prolonged glides during deep descents in the water column actively swim less, and place relatively smaller loads on their vertebral columns, compared with species that execute shallower dives. We found that cetacean vertebral trabecular bone properties differed from the properties of terrestrial mammals; for every given bone strength, cetacean bone was less stiff by comparison. This relative lack of material rigidity within vertebral bone may be attributed to the non-weight-bearing locomotor modes of fully aquatic mammals.more » « less
-
The relative contributions of trabecular (spongy) and cortical (compact) bone to bone strength and stiffness, although investigated in humans, is mostly unclear. As a result, we do not understand how the skeleton of small animals, especially the axial skeleton, has evolved to deal with the particular challenges of life at tiny size. In mammals, some small species have notably reduced their vertebral trabecular bone structure, resulting in mostly hollow medullary cavities. To assess the importance of trabecular structure to the mechanical properties of small mammalian vertebrae, and incorporate the effects of both trabecular and cortical bone structure, we conducted finite element analysis on the lumbar vertebrae of 15 species of shrews (Mammalia: Soricidae). We analyzed two sets of models: vertebrae with the trabecular structure intact, and vertebrae with all trabeculae excised from the centrum. In all models, the cranial end of the centrum was immobilized, and a 5N load was applied to the caudal end of the centrum, parallel to the craniocaudal axis. Results indicate higher peak stresses and larger displacements in models lacking trabeculae. Although smaller body size constrains the number of trabeculae that small mammals develop, we expect that these trabeculae contribute disproportionately to bone strength and stiffness. Ongoing work will validate these analyses with empirical materials testing and assess how bone morphofunctional characteristics change as body size increases.more » « less
-
The relative contributions of trabecular (spongy) and cortical (compact) bone to bone strength and stiffness are poorly understood across mammalian body size. In mammals, some small species have notably reduced their vertebral trabecular bone structure, resulting in mostly hollow medullary cavities. To assess the importance of trabecular structure to the mechanical properties of small mammalian vertebrae, we conducted finite element analysis on the lumbar vertebrae of 25 species of shrews (Soricidae) weighing 2-100g. We analyzed two sets of models: vertebrae with the trabecular structure intact (full), and vertebrae with all trabeculae excised from the centrum (hollow). All models were scaled to the same ratio of load to surface area. The cranial end of the centrum was immobilized, and a 5N craniocaudally-oriented load was applied to the caudal end of the centrum. We measured mean von Mises stress (MVMS) to capture strength, and total strain energy to capture stiffness. MVMS and total strain energy both decrease as body size increases, and hollow models experience higher stresses and strains than full models. With increasing body size, the difference in total strain energy between full and hollow models decreases, but the difference in MVMS slightly increases. This suggests a difference in the functional advantage conferred by trabeculae among small mammals, as well as a possible selective pressure for different functional emphasis in very small and larger mammalian bones.more » « less
-
The diversity of vertebrate skeletons is often attributed to adaptations to distinct ecological factors such as diet, locomotion, and sensory environment. Although the adaptive evolution of skull, appendicular skeleton, and vertebral column is well studied in vertebrates, comprehensive investigations of all skeletal components simultaneously are rarely performed. Consequently, we know little of how modes of evolution differ among skeletal components. Here, we tested if ecological and phylogenetic effects led to distinct modes of evolution among the cranial, appendicular and vertebral regions in extant carnivoran skeletons. Using multivariate evolutionary models, we found mosaic evolution in which only the mandible, hindlimb and posterior (i.e. last thoracic and lumbar) vertebrae showed evidence of adaptation towards ecological regimes whereas the remaining skeletal components reflect clade-specific evolutionary shifts. We hypothesize that the decoupled evolution of individual skeletal components may have led to the origination of distinct adaptive zones and morphologies among extant carnivoran families that reflect phylogenetic hierarchies. Overall, our work highlights the importance of examining multiple skeletal components simultaneously in ecomorphological analyses. Ongoing work integrating the fossil and palaeoenvironmental record will further clarify deep-time drivers that govern the carnivoran diversity we see today and reveal the complexity of evolutionary processes in multicomponent systems.more » « less
An official website of the United States government

