skip to main content


Title: A Method for Creating Product Social Impact Models of Engineered Products
Abstract All products impact the lives of their users, this is called social impact. Some social impacts are commonly recognized by the engineering community, such as impacts to a user’s health and safety, while other social impacts can be more difficult to recognize, such as impacts on families and gender roles. When engineers make design decisions, without considering social impacts, they can unknowingly cause negative social impacts. Even harming the user and/or society. Despite its challenges, measuring a program’s or policy’s social impact is a common practice in the field of social sciences. These measurements are made using social impact indicators, which are simply the things observed to verify that true progress is being made. While there are clear benefits to predicting the social impact of an engineered product, it is unclear how engineers should select indicators and build predictive social impact models that are functions of engineering parameters and decisions. This paper introduces a method for selecting social impact indicators and creating predictive social impact models that can help engineers predict and improve the social impact of their products. As a first step in the method, an engineer identifies the product’s users, objectives, and requirements. Then, the social impact categories that are related to the product are determined. From each of these categories, the engineer selects several social impact indicators. Finally, models are created for each indicator to predict how a product’s parameters will change these indicators. The impact categories and indicators can be translated into product requirements and performance measures that can be used in product development processes. This method is used to predict the social impact of the proposed, expanded U.S. Mexico border wall.  more » « less
Award ID(s):
1761505
NSF-PAR ID:
10192001
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
142
Issue:
4
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Though academic research for identifying and considering the social impact of products is emerging, additional insights can be gained from engineers who design products every day. This paper explores current practices in industries used by design engineers to consider the social impact of products. Forty-six individuals from 34 different companies were interviewed to discover what disconnects exist between academia and industry when considering a product’s social impact. These interviews were also used to discover how social impact might be considered in a design setting moving forward. This is not a study to find “the state of the art,” but considers the average engineering professional’s work to design products in various industries. Social impact assessments (SIA) and social life cycle assessments (SLCA) are two of the most common processes discussed in the literature to evaluate social impact, both generally and in products. Interestingly, these processes did not arise in any discussion in interviews, despite respondents affirming that they do consider social impact in the product design. Processes used to predict social impact, rather than simply evaluate, were discussed by the respondents. These tended to be developed within the company and often related to industry imposed government regulations. To build on this study, the findings herein should be further validated for executives, managers, and engineers. A study specific to these roles should be designed to understand the disconnect better. Additionally, processes should be developed to assist engineers in considering the social impact of their products. Work should also be done to help educate engineers and their leaders on the value of considering the social impact in product design. 
    more » « less
  2. Abstract Evaluating the social impacts of engineered products is critical to ensuring that products are having their intended positive impacts and learning how to improve product designs for a more positive social impact. Quantitative evaluation of product social impacts is made possible through the use of social impact indicators, which combine the user data in a meaningful way to give insight into the current social condition of an individual or population. Most existing methods for collecting these user data for social impact indicators require direct human interaction with users of a product (e.g., interviews, surveys, and observational studies). These interactions produce high-fidelity data that help indicate the product impact but only at a single snapshot in time and are typically infrequently collected due to the large human resources and cost associated with obtaining them. In this article, a framework is proposed that outlines how low-fidelity data often obtainable using remote sensors, satellites, or digital technology can be collected and correlated with high-fidelity, infrequently collected data to enable continuous, remote monitoring of engineered products via the user data. These user data are critical to determining current social impact indicators that can be used in a posteriori social impact evaluation. We illustrate an application of this framework by demonstrating how it can be used to collect data for calculating several social impact indicators related to water hand pumps in Uganda. Key to this example is the use of a deep learning model to correlate user type (man, woman, or child statured) with the raw hand pump data obtained via an integrated motion unit sensor for 1200 hand pump users. 
    more » « less
  3. Abstract Engineered products often have more social impacts than are realized. A product review was conducted to bring this to light. In this paper, we show the extent to which different social impacts in 11 impact categories are co-present in 150 products and how this can help engineers and others during the product development process. Specifically, we show how social impact categories not previously considered can be identified. The product review resulted in 13,200 data points that were divided into two data sets, one with 8800 data points from which a social impact probability table was created. The remaining data points were then used to validate the table. All data points were then combined to create a final social impact probability table. This table provides insight for how various social impact categories correlate and can assist engineers in expanding their views to include additional social impact objectives and thus achieve a design with broader social impact or a design with minimized unwanted negative social impact. A simple method for predicting social impact is also created in order to assist engineers when developing products with social impacts in mind. 
    more » « less
  4. When confronted with systematic racism, social justice, and equity issues, engineering and STEM education often assumes that these topics will be covered in other courses and are not relevant to STEM. However, engineering as a discipline has one of the greatest effects on society’s well-being. From the raw materials used, products created, and emissions generated, all aspects of engineering have direct and indirect impacts on humanity. Our current engineering education project works with upper elementary and middle school teachers to apply a culturally relevant engineering design (CRED) framework within their classrooms. This framework is adapted from UTeachEngineering and culturally relevant pedagogy from Gay and Billings is embedded within each step of the design process. The North Dakota Native American Essential Understandings are used to frame and inform the culturally relevant pedagogy. Tribal elder’s stories and experiences are centered along with community leaders in each of the school’s communities. Responses from students and teachers has been overwhelmingly positive. Teachers have noticed increased engagement from all students when cultural and community leaders have been invited into the classroom and involved in the engineering design process. Students who normally do not see themselves represented in STEM professions have taken active leadership roles in their group’s engineering design process. Teachers have also recognized that culturally relevant pedagogy can be utilized in all aspects of their curricula. With the success of the project in elementary and middle school classrooms, the question then became, how can we see similar success in our college classrooms? When brainstorming how to incorporate culture and community in our curricula it became apparent that best practices in engineering education have the opportunity to intentionally involve community and cultural leaders. ABET learning outcomes require the “consideration of public health, safety, and welfare” in engineering design and “the impact of engineering solutions in global, economic, environmental, and societal contexts.” When making engineering design decisions, who will be affected if there is an accidental release of chemicals to the environment? Which communities are affected by global warming? Will the public be able to afford the new product that is being produced? Will the new processes or products add value to people’s lives? And how do we train future engineers to consider all community members, not just those who look like them, but those from the most marginalized groups? This talk will introduce our culturally relevant engineering design framework, provide ways to include community and cultural leaders within courses, and how, with the help of Northwestern’s Anti-Racism, Diversity, Equity and Inclusion resources, to create homework problems that reflect social justice and equity issues within engineering 
    more » « less
  5. Abstract Meeting the United Nations (UN) sustainable development goals efficiently requires designers and engineers to solve multi-objective optimization problems involving trade-offs between social, environmental, and economical impacts. This paper presents an approach for designers and engineers to quantify the social and environmental impacts of a product at a population level and then perform a trade-off analysis between those impacts. In this approach, designers and engineers define the attributes of the product as well as the materials and processes used in the product’s life cycle. Agent-based modeling (ABM) tools that have been developed to model the social impacts of products are combined with life cycle assessment (LCA) tools that have been developed to evaluate the pressures that different processes create on the environment. Designers and engineers then evaluate the trade-offs between impacts by finding non-dominated solutions that minimize environmental impacts while maximizing positive and/or minimizing negative social impacts. Product adoption models generated by ABM allow designers and engineers to approximate population level environmental impacts and avoid Simpson’s paradox, where a reversal in choices is preferred when looking at the population level impacts versus the individual product-level impacts. This analysis of impacts has the potential to help designers and engineers create more impactful products that aid in reaching the UN sustainable development goals. 
    more » « less