skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lessons Learned from Teaching Culturally Relevant Engineering Design in K–12 Classrooms and Applying Them to Undergraduate Engineering Courses
When confronted with systematic racism, social justice, and equity issues, engineering and STEM education often assumes that these topics will be covered in other courses and are not relevant to STEM. However, engineering as a discipline has one of the greatest effects on society’s well-being. From the raw materials used, products created, and emissions generated, all aspects of engineering have direct and indirect impacts on humanity. Our current engineering education project works with upper elementary and middle school teachers to apply a culturally relevant engineering design (CRED) framework within their classrooms. This framework is adapted from UTeachEngineering and culturally relevant pedagogy from Gay and Billings is embedded within each step of the design process. The North Dakota Native American Essential Understandings are used to frame and inform the culturally relevant pedagogy. Tribal elder’s stories and experiences are centered along with community leaders in each of the school’s communities. Responses from students and teachers has been overwhelmingly positive. Teachers have noticed increased engagement from all students when cultural and community leaders have been invited into the classroom and involved in the engineering design process. Students who normally do not see themselves represented in STEM professions have taken active leadership roles in their group’s engineering design process. Teachers have also recognized that culturally relevant pedagogy can be utilized in all aspects of their curricula. With the success of the project in elementary and middle school classrooms, the question then became, how can we see similar success in our college classrooms? When brainstorming how to incorporate culture and community in our curricula it became apparent that best practices in engineering education have the opportunity to intentionally involve community and cultural leaders. ABET learning outcomes require the “consideration of public health, safety, and welfare” in engineering design and “the impact of engineering solutions in global, economic, environmental, and societal contexts.” When making engineering design decisions, who will be affected if there is an accidental release of chemicals to the environment? Which communities are affected by global warming? Will the public be able to afford the new product that is being produced? Will the new processes or products add value to people’s lives? And how do we train future engineers to consider all community members, not just those who look like them, but those from the most marginalized groups? This talk will introduce our culturally relevant engineering design framework, provide ways to include community and cultural leaders within courses, and how, with the help of Northwestern’s Anti-Racism, Diversity, Equity and Inclusion resources, to create homework problems that reflect social justice and equity issues within engineering  more » « less
Award ID(s):
2010169
PAR ID:
10480317
Author(s) / Creator(s):
;
Publisher / Repository:
ASEE
Date Published:
Journal Name:
2023 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Location:
Baltimore, MD
Sponsoring Org:
National Science Foundation
More Like this
  1. Oftentimes engineering design tasks are thought of as acultural and devoid of community inclusion and values. However, engineering design is inherently a cultural endeavor. Problems needing engineering solutions or design thinking are situated in a specific community and need community solutions. This work in progress paper describes initial efforts from a project to help elementary and middle school teachers create culturally relevant engineering design tasks for implementation in their classrooms. To integrate best practices for culturally relevant pedagogy, the engineering design framework developed by UTeach Engineering was adapted to specifically address community needs and cultural values. Changes to the framework also include culturally relevant instructional strategies for classroom implementation. To situate the engineering design steps within a culturally relevant framework questions involving communities and students’ cultural needs, values, and expectations were posed in each stage of the design process. A water filtration engineering design task was situated in the cultural concept of “Mni Wiconi” (Water is life in the Dakota language). This was taught in a summer professional development workshop for a cohort of elementary and middle school teachers, in rural North Dakota, with school districts comprised of large Native American student populations. Teachers adapted this design task for their individual classrooms and content areas (science, math, social studies, ELA) and implemented it in their classrooms in the fall of 2021. Additional support for teachers was provided with fall workshop days aimed at helping them with the facilitation of a culturally relevant engineering task. To integrate culturally relevant teaching and good engineering design tasks, the North Dakota Department of Public Instruction’s Native American Essential Understandings Teachings of our Elder’s website was used. This allowed teachers and students to have firsthand knowledge of how various science and engineering concepts are framed within the indigenous community. Professional development focused on how to situate culturally responsive teaching in engineering design. For example, in one of the school districts the water filtration task was related to increased pollution of a nearby lake which holds significant importance for the local Tribal Nation. In addition to being able to visibly witness the demand for cleaner water, the book “We are Water Protectors” written by Carole Lindstrom, was used to provide cultural grounding for the Identify and Describe stages of the engineering design framework. Case studies of how teachers incorporated the water filtration design task into their lesson plans are presented along with their suggestions on how to improve classroom implementation. Future work in the program includes teachers and their students developing engineering design tasks situated in their own communities and cultures. 
    more » « less
  2. Elementary schools provide a natural entry point to computer science (CS) education, yet elementary teachers spend most of their instructional time in literacy and math. One way to bring CS in elementary schools is through integrated approaches. In this work we present a professional development (PD) program that helps elementary teachers integrate CS with content and culturally relevant pedagogy to create accessible CS instruction. Qualitative data were collected from five teachers who attended the year-long program. Findings indicate that all teachers fully integrated CS with content and culturally-relevant pedagogy; however, such integration focused mostly on literacy and closely paralleled what was presented in PD. Implications are drawn regarding the design of PD programs that help teachers integrate CS in elementary classrooms. 
    more » « less
  3. In a time when the United States is faced with continued racism and social unrest, it is more important than ever to prepare teachers who can advocate for marginalized students and social justice. This article describes the evolution of a seminar course called Theory and Reality: Practicum in Math and Science Teaching in High-Need Schools within the context of a predominately White teacher-preparation program. Guided by scholars of culturally relevant education and our professional and personal journeys as equity-focused teacher educators, we sought to design experiences to prepare preservice science and mathematics teachers to teach in high-poverty or underfunded schools. Specifically, the course was intended to (1) develop an understanding of pedagogical practices and educational strategies for successful teaching in a high-need school setting, especially in mathematics and science classrooms, and (2) cultivate both cultural self-awareness and cross-cultural consciousness in one’s ability to adapt to the high-need environment in a culturally responsive way. We describe the evolutionary rationale for changes made to course assignments and readings to promote cultural competence and early advocacy skills for teacher candidates interested in teaching in schools facing poverty. We highlight preservice teachers’ reflections that evidence their early conceptualizations of teaching in a high-need school context and how assignments promoted their relationship-building and advocacy skills for marginalized students. 
    more » « less
  4. null (Ed.)
    The field of computer science continues to lack diverse representation from women and racially minoritized individuals. One way to address the discrepancies in representation is through systematic changes in computer science education from a young age. Pedagogical and instructional changes are needed to promote meaningful and equitable learning that engage students with rigorous and inclusive curricula. We developed an equity-focused professional development program for teachers that promotes culturally responsive pedagogy in the context of computer science education. This paper provides an overview of our culturally responsive frameworks and an examination of how teachers conceptualized and integrated culturally responsive pedagogy in their classrooms. Findings revealed that teachers were consistently planning to implement a wide range of culturally responsive instructional and pedagogical practices into their classrooms. 
    more » « less
  5. Justice-centred science pedagogy has been suggested as an effective framework for supporting teachers in bringing in culturally relevant pedagogy to their science classrooms; however, limited instructional tools exist that introduce social dimensions of science in ways teachers feel confident navigating. In this article, we add to the justice-centred science pedagogy framework by offering tools to make sense of science and social factors and introduce socioscientific modelling as an instructional strategy for attending to social dimensions of science in ways that align with justice-centred science pedagogy. Socioscientific modelling offers an inclusive, culturally responsive approach to education in science, technology, engineering, the arts and mathematics through welcoming students’ diverse repertoires of personal and community knowledge and linking disciplinary knowledge with social dimensions. In this way, students can come to view content knowledge as a tool for making sense of inequitable systems and societal injustices. Using data from an exploratory study conducted in summer 2022, we present emerging evidence of how this type of modelling has shown students to demonstrate profound insight into social justice science issues, construct understandings that are personally meaningful and engage in sophisticated reasoning. We conclude with future considerations for the field. 
    more » « less