skip to main content


Title: Growth under Fluctuating Light Reveals Large Trait Variation in a Panel of Arabidopsis Accessions
The capacity of photoautotrophs to fix carbon depends on the efficiency of the conversion of light energy into chemical potential by photosynthesis. In nature, light input into photosynthesis can change very rapidly and dramatically. To analyze how genetic variation in Arabidopsis thaliana affects photosynthesis and growth under dynamic light conditions, 36 randomly chosen natural accessions were grown under uniform and fluctuating light intensities. After 14 days of growth under uniform or fluctuating light regimes, maximum photosystem II quantum efficiency (Fv/Fm) was determined, photosystem II operating efficiency (ΦPSII) and non-photochemical quenching (NPQ) were measured in low light, and projected leaf area (PLA) as well as the number of visible leaves were estimated. Our data show that ΦPSII and PLA were decreased and NPQ was increased, while Fv/Fm and number of visible leaves were unaffected, in most accessions grown under fluctuating compared to uniform light. There were large changes between accessions for most of these parameters, which, however, were not correlated with genomic variation. Fast growing accessions under uniform light showed the largest growth reductions under fluctuating light, which correlated strongly with a reduction in ΦPSII, suggesting that, under fluctuating light, photosynthesis controls growth and not vice versa.  more » « less
Award ID(s):
1847193
NSF-PAR ID:
10192013
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Plants
Volume:
9
Issue:
3
ISSN:
2223-7747
Page Range / eLocation ID:
316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With the high variability of natural growth environments, plants exhibit flexibility and resilience in regard to the strategies they employ to maintain overall fitness, including maximizing light use for photosynthesis, while simultaneously limiting light‐associated damage. We measured distinct parameters of photosynthetic performance ofArabidopsis thalianaplants under dynamic light regimes. Plants were grown to maturity then subjected to the following 5‐day (16 h light, 8 h dark) regime: Day 1 at constant light (CL) intensity during light period, representative of a common lab growth condition; Day 2 under sinusoidal variation in light intensity (SL) during the light period that is representative of changes occurring during a clear sunny day; Day 3 under fluctuating light (FL) intensity during the light period that simulates sudden changes that might occur with the movements of clouds in and out of the view of the sun; Day 4, repeat of CL; and Day 5, repeat of FL. We also examined the global transcriptome profile in these growth conditions based on obtaining RNA‐sequencing (RNA‐seq) data for whole plant rosettes. Our transcriptomic analyses indicated downregulation of photosystem I (PSI) and II (PSII) associated genes, which were correlated with elevated levels of photoinhibition as indicated by measurements of nonphotochemical quenching (NPQ), energy‐dependent quenching (qE), and inhibitory quenching (qI) under both SL and FL conditions. Furthermore, our transcriptomic results indicated downregulation of tetrapyrrole biosynthesis associated genes, coupled with reduced levels of chlorophyll under both SL and FL compared with CL, as well as downregulation of photorespiration‐associated genes under SL. We also noticed an enrichment of the stress response gene ontology (GO) terms for genes differentially regulated under FL when compared with SL. Collectively, our phenotypic and transcriptome analyses serve as useful resources for probing the underlying molecular mechanisms associated with plant acclimation to rapid light intensity changes in the natural environment.

     
    more » « less
  2. Abstract

    Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits—Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.

     
    more » « less
  3. Dietz, Karl-Josef (Ed.)
    Abstract Plants in dryland ecosystems experience extreme daily and seasonal fluctuations in light, temperature, and water availability. We used an in situ field experiment to uncover the effects of natural and reduced levels of ultraviolet radiation (UV) on maximum PSII quantum efficiency (Fv/Fm), relative abundance of photosynthetic pigments and antioxidants, and the transcriptome in the desiccation-tolerant desert moss Syntrichia caninervis. We tested the hypotheses that: (i) S. caninervis plants undergo sustained thermal quenching of light [non-photochemical quenching (NPQ)] while desiccated and after rehydration; (ii) a reduction of UV will result in improved recovery of Fv/Fm; but (iii) 1 year of UV removal will de-harden plants and increase vulnerability to UV damage, indicated by a reduction in Fv/Fm. All field-collected plants had extremely low Fv/Fm after initial rehydration but recovered over 8 d in lab-simulated winter conditions. UV-filtered plants had lower Fv/Fm during recovery, higher concentrations of photoprotective pigments and antioxidants such as zeaxanthin and tocopherols, and lower concentrations of neoxanthin and Chl b than plants exposed to near natural UV levels. Field-grown S. caninervis underwent sustained NPQ that took days to relax and for efficient photosynthesis to resume. Reduction of solar UV radiation adversely affected recovery of Fv/Fm following rehydration. 
    more » « less
  4. Abstract

    In nature, plants experience rapid changes in light intensity and quality throughout the day. To maximize growth, they have established molecular mechanisms to optimize photosynthetic output while protecting components of the light‐dependent reaction and CO2fixation pathways. Plant phenotyping of mutant collections has become a powerful tool to unveil the genetic loci involved in environmental acclimation. Here, we describe the phenotyping of the transfer‐DNA (T‐DNA) insertion mutant line SALK_008491, previously known asnhd1‐1. Growth in a fluctuating light regime caused a loss in growth rate accompanied by a spike in photosystem (PS) II damage and increased non‐photochemical quenching (NPQ). Interestingly, an independentnhd1null allele did not recapitulate the NPQ phenotype. Through bulk sequencing of a backcrossed segregating F2pool, we identified an ~14‐kb large deletion on chromosome 3 (Chr3) in SALK_008491 affecting five genes upstream ofNHD1. BesidesNHD1, which encodes for a putative plastid Na+/H+antiporter, the stromal NAD‐dependent D‐3‐phosphoglycerate dehydrogenase 3 (PGDH3) locus was eradicated. Although some changes in the SALK_008491 mutant's photosynthesis can be assigned to the loss of PGDH3, our follow‐up studies employing respective single mutants and complementation with overlapping transformation‐competent artificial chromosome (TAC) vectors reveal that the exacerbated fluctuating light sensitivity in SALK_008491 mutants result from the simultaneous loss of PGDH3 and NHD1. Altogether, the data obtained from this large deletion‐carrying mutant provide new and unintuitive insights into the molecular mechanisms that function to protect the photosynthetic machinery. Moreover, our study renews calls for caution when setting up reverse genetic studies using T‐DNA lines. Although second‐site insertions, indels, and SNPs have been reported before, large deletion surrounding the insertion site causes yet another problem. Nevertheless, as shown through this research, such unpredictable genetic events following T‐DNA mutagenesis can provide unintuitive insights that allow for understanding complex phenomena such as the plant acclimation to dynamic high light stress.

     
    more » « less
  5. Summary

    Photoprotection against excess light via nonphotochemical quenching (NPQ) is indispensable for plant survival. However, slow NPQ relaxation under low light conditions can decrease yield of field‐grown crops up to 40%.

    Using semi‐high‐throughput assay, we quantified the kinetics of NPQ and photosystem II operating efficiency (ΦPSII) in a replicated field trial of more than 700 maize (Zea mays) genotypes across 2 yr. Parametrized kinetics data were used to conduct genome‐wide association studies.

    For six candidate genes involved in NPQ and ΦPSII kinetics in maize the loss of function alleles of orthologous genes in Arabidopsis (Arabidopsis thaliana) were characterized: two thioredoxin genes, and genes encoding a transporter in the chloroplast envelope, an initiator of chloroplast movement, a putative regulator of cell elongation and stomatal patterning, and a protein involved in plant energy homeostasis.

    Since maize and Arabidopsis are distantly related, we propose that genes involved in photoprotection and PSII function are conserved across vascular plants. The genes and naturally occurring functional alleles identified here considerably expand the toolbox to achieving a sustainable increase in crop productivity.

     
    more » « less