Water use efficiency (WUE) is a critical ecosystem function and a key indicator of vegetation responses to drought, yet its temporal trajectories and underlying drivers during drought propagation remain insufficiently understood. Here, we examined the trajectories, interdependencies and drivers of multidimensional WUE metrics and their components (gross primary production (GPP), evapotranspiration, transpiration (T), and canopy conductance (Gc)) using a conceptual drought propagation framework. We found that even though the carbon assimilation efficiency per stomata increases during drought, the canopy‐level WUE (represented by transpiration WUE (TWUE)) declines, indicating that stomatal regulation operates primarily at the leaf level and cannot offset the drought‐induced reduction in WUE at the canopy scale. A stronger dependence on T and TWUE indicates that the water–carbon trade‐off relationship of vegetation more inclines toward water transport than carbon assimilation. Gc fails to prevent the sharp decline in GPP during drought and has limited capacity to suppress T, as reflected by the reduction magnitude and the threshold (the turning point at which a component shifts from a normal to drought‐responsive state). The primary drivers of the water–carbon relationship under drought propagation include vapor pressure deficit and hydraulic traits. Among plant functional types, grasslands show the strongest water–carbon fluxes in response to drought, whereas evergreen broadleaf forests exhibit the weakest response. These findings refine our comprehensive understanding of multidimensional ecosystem functional dynamics under drought propagation and enlighten how the physiological response of vegetation to drought affects the carbon and water cycles.
more »
« less
Up-regulation of non-photochemical quenching improves water use efficiency and reduces whole-plant water consumption under drought in Nicotiana tabacum
Abstract Water supply limitations will likely impose increasing restrictions on future crop production, underlining a need for crops that use less water per mass of yield. Water use efficiency (WUE) therefore becomes a key consideration in developing resilient and productive crops. In this study, we hypothesized that it is possible to improve WUE under drought conditions via modulation of chloroplast signals for stomatal opening by up-regulation of non-photochemical quenching (NPQ). Nicotiana tabacum plants with strong overexpression of the PsbS gene encoding PHOTOSYSTEM II SUBUNIT S, a key protein in NPQ, were grown under differing levels of drought. The PsbS-overexpressing lines lost 11% less water per unit CO2 fixed under drought and this did not have a significant effect on plant size. Depending on growth conditions, the PsbS-overexpressing lines consumed from 4–30% less water at the whole-plant level than the corresponding wild type. Leaf water and chlorophyll contents showed a positive relation with the level of NPQ. This study therefore provides proof of concept that up-regulation of NPQ can increase WUE, and as such is an important step towards future engineering of crops with improved performance under drought.
more »
« less
- Award ID(s):
- 2142993
- PAR ID:
- 10522533
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Experimental Botany
- Volume:
- 75
- Issue:
- 13
- ISSN:
- 0022-0957
- Format(s):
- Medium: X Size: p. 3959-3972
- Size(s):
- p. 3959-3972
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Water-use efficiency (WUE), weighing the balance between plant transpiration and growth, is a key characteristic of ecosystem functioning and a component of tree drought resistance. Seasonal dynamics of tree-level WUE and its connections with drought variability have not been previously explored in sky-island montane forests. We investigated whole-tree transpiration and stem growth of bristlecone ( Pinus longaeva ) and limber pine ( Pinus flexilis ) within a high-elevation stand in central-eastern Nevada, United States, using sub-hourly measurements over 5 years (2013–2017). A moderate drought was generally observed early in the growing season, whereas interannual variability of summer rains determined drought levels between years, i.e., reducing drought stress in 2013–2014 while enhancing it in 2015–2017. Transpiration and basal area increment (BAI) of both pines were coupled throughout June–July, resulting in a high but relatively constant early season WUE. In contrast, both pines showed high interannual plasticity in late-season WUE, with a predominant role of stem growth in driving WUE. Overall, bristlecone pine was characterized by a lower WUE compared to limber pine. Dry or wet episodes in the late growing season overrode species differences. Our results suggested thresholds of vapor pressure deficit and soil moisture that would lead to opposite responses of WUE to late-season dry or wet conditions. These findings provide novel insights and clarify potential mechanisms modulating tree-level WUE in sky-island ecosystems of semi-arid regions, thereby helping land managers to design appropriate science-based strategies and reduce uncertainties associated with the impact of future climatic changes.more » « less
-
Summary Some plants exhibit dynamic hydraulic regulation, in which the strictness of hydraulic regulation (i.e. iso/anisohydry) changes in response to environmental conditions. However, the environmental controls over iso/anisohydry and the implications of flexible hydraulic regulation for plant productivity remain unknown.InJuniperus osteosperma, a drought‐resistant dryland conifer, we collected a 5‐month growing season time series ofin situ, high temporal‐resolution plant water potential () and stand gross primary productivity (GPP). We quantified the stringency of hydraulic regulation associated with environmental covariates and evaluated how predawn water potential contributes to empirically predicting carbon uptake.Juniperus osteospermashowed less stringent hydraulic regulation (more anisohydric) after monsoon precipitation pulses, when soil moisture and atmospheric demand were high, and corresponded with GPP pulses. Predawn water potential matched the timing of GPP fluxes and improved estimates of GPP more strongly than soil and/or atmospheric moisture, notably resolving GPP underestimation before vegetation green‐up.Flexible hydraulic regulation appears to allowJ. osteospermato prolong soil water extraction and, therefore, the period of high carbon uptake following monsoon precipitation pulses. Water potential and its dynamic regulation may account for why process‐based and empirical models commonly underestimate the magnitude and temporal variability of dryland GPP.more » « less
-
Summary Models of tree–grass coexistence in savannas make different assumptions about the relative performance of trees and grasses under wet vs dry conditions. We quantified transpiration and drought tolerance traits in 26 tree and 19 grass species from the African savanna biome across a gradient of soil water potentials to test for a trade‐off between water use under wet conditions and drought tolerance.We measured whole‐plant hourly transpiration in a growth chamber and quantified drought tolerance using leaf osmotic potential (Ψosm). We also quantified whole‐plant water‐use efficiency (WUE) and relative growth rate (RGR) under well‐watered conditions.Grasses transpired twice as much as trees on a leaf‐mass basis across all soil water potentials. Grasses also had a lower Ψosmthan trees, indicating higher drought tolerance in the former. Higher grass transpiration and WUE combined to largely explain the threefold RGR advantage in grasses.Our results suggest that grasses outperform trees under a wide range of conditions, and that there is no evidence for a trade‐off in water‐use patterns in wet vs dry soils. This work will help inform mechanistic models of water use in savanna ecosystems, providing much‐needed whole‐plant parameter estimates for African species.more » « less
-
Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C 3 or C 4 photosynthesis. CAM plants are derived from C 3 photosynthesis ancestors. However, it is extremely unlikely that the C 3 or C 4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C 3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C 3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C 3 -to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C 3 -to-CAM transition in plants using synthetic biology toolboxes.more » « less
An official website of the United States government
