skip to main content

Title: A secure location-based alert system with tunable privacy-performance trade-off
Monitoring location updates from mobile users has important applications in many areas, ranging from public health (e.g., COVID-19 contact tracing) and national security to social networks and advertising. However, sensitive information can be derived from movement patterns, thus protecting the privacy of mobile users is a major concern. Users may only be willing to disclose their locations when some condition is met, for instance in proximity of a disaster area or an event of interest. Currently, such functionality can be achieved using searchable encryption. Such cryptographic primitives provide provable guarantees for privacy, and allow decryption only when the location satisfies some predicate. Nevertheless, they rely on expensive pairing-based cryptography (PBC), of which direct application to the domain of location updates leads to impractical solutions. We propose secure and efficient techniques for private processing of location updates that complement the use of PBC and lead to significant gains in performance by reducing the amount of required pairing operations. We implement two optimizations that further improve performance: materialization of results to expensive mathematical operations, and parallelization. We also propose an heuristic that brings down the computational overhead through enlarging an alert zone by a small factor (given as system parameter), therefore trading more » off a small and controlled amount of privacy for significant performance gains. Extensive experimental results show that the proposed techniques significantly improve performance compared to the baseline, and reduce the searchable encryption overhead to a level that is practical in a computing environment with reasonable resources, such as the cloud. « less
Authors:
; ; ;
Award ID(s):
1909806
Publication Date:
NSF-PAR ID:
10192048
Journal Name:
Geoinformatica
ISSN:
1384-6175
Sponsoring Org:
National Science Foundation
More Like this
  1. Monitoring location updates from mobile users has important applications in many areas, ranging from public health (e.g., COVID-19 contact tracing) and national security to social networks and advertising. However, sensitive information can be derived from movement patterns, thus protecting the privacy of mobile users is a major concern. Users may only be willing to disclose their locations when some condition is met, for instance in proximity of a disaster area or an event of interest. Currently, such functionality can be achieved using searchable encryption. Such cryptographic primitives provide provable guarantees for privacy, and allow decryption only when the location satisfies some predicate. Nevertheless, they rely on expensive pairing-based cryptography (PBC), of which direct application to the domain of location updates leads to impractical solutions. We propose secure and efficient techniques for private processing of location updates that complement the use of PBC and lead to significant gains in performance by reducing the amount of required pairing operations. We implement two optimizations that further improve performance: materialization of results to expensive mathematical operations, and parallelization. We also propose an heuristic that brings down the computational overhead through enlarging an alert zone by a small factor (given as system parameter), therefore tradingmore »off a small and controlled amount of privacy for significant performance gains. Extensive experimental results show that the proposed techniques significantly improve performance compared to the baseline, and reduce the searchable encryption overhead to a level that is practical in a computing environment with reasonable resources, such as the cloud.« less
  2. Most online mobile services make use of location data to improve customer experience. Mobile users can locate points of interest near them, or can receive recommendations tailored to their whereabouts. However, serious privacy concerns arise when location data is revealed in clear to service providers. Several solutions employ searchable encryption (SE) to evaluate spatial predicates directly on location ciphertexts. While doing so preserves privacy, the performance overhead incurred is high. We focus on a prominent SE technique in the public-key setting -- Hidden Vector Encryption (HVE), and propose a graph embedding technique to encode location data in a way that significantly boost the performance of processing on ciphertexts. We show that finding the optimal encoding is NP-hard, and provide several heuristics that are fast and obtain significant performance gains. Our extensive experimental evaluation on real-life datasets shows that our solutions can improve computational overhead by a factor of two compared to the baseline.
  3. Most online mobile services make use of location data to improve customer experience. Mobile users can locate points of interest near them, or can receive recommendations tailored to their whereabouts. However, serious privacy concerns arise when location data is revealed in clear to service providers. Several solutions employ searchable encryption (SE) to evaluate spatial predicates directly on location ciphertexts. While doing so preserves privacy, the performance overhead incurred is high. We focus on a prominent SE technique in the public-key setting -- Hidden Vector Encryption (HVE), and propose a graph embedding technique to encode location data in a way that significantly boost the performance of processing on ciphertexts. We show that finding the optimal encoding is NP-hard, and provide several heuristics that are fast and obtain significant performance gains. Our extensive experimental evaluation on real-life datasets shows that our solutions can improve computational overhead by a factor of two compared to the baseline.
  4. Homomorphic Encryption (HE) based secure Neural Networks(NNs) inference is one of the most promising security solutions to emerging Machine Learning as a Service (MLaaS). In the HE-based MLaaS setting, a client encrypts the sensitive data, and uploads the encrypted data to the server that directly processes the encrypted data without decryption, and returns the encrypted result to the client. The clients' data privacy is preserved since only the client has the private key. Existing HE-enabled Neural Networks (HENNs), however, suffer from heavy computational overheads. The state-of-the-art HENNs adopt ciphertext packing techniques to reduce homomorphic multiplications by packing multiple messages into one single ciphertext. Nevertheless, rotations are required in these HENNs to implement the sum of the elements within the same ciphertext. We observed that HENNs have to pay significant computing overhead on rotations, and each of rotations is ∼10× more expensive than homomorphic multiplications between ciphertext and plaintext. So the massive rotations have become a primary obstacle of efficient HENNs. In this paper, we propose a fast, frequency-domain deep neural network called Falcon, for fast inferences on encrypted data. Falcon includes a fast Homomorphic Discrete Fourier Transform (HDFT) using block-circulant matrices to homomorphically support spectral operations. We also propose severalmore »efficient methods to reduce inference latency, including Homomorphic Spectral Convolution and Homomorphic Spectral Fully Connected operations by combing the batched HE and block-circulant matrices. Our experimental results show Falcon achieves the state-of-the-art inference accuracy and reduces the inference latency by 45.45%∼85.34% over prior HENNs on MNIST and CIFAR-10.« less
  5. Dynamic Searchable Symmetric Encryption (DSSE) allows to delegate keyword search and file update over an encrypted database via encrypted indexes, and therefore provides opportunities to mitigate the data privacy and utilization dilemma in cloud storage platforms. Despite its merits, recent works have shown that efficient DSSE schemes are vulnerable to statistical attacks due to the lack of forward-privacy, whereas forward-private DSSE schemes suffers from practicality concerns as a result of their extreme computation overhead. Due to significant practical impacts of statistical attacks, there is a critical need for new DSSE schemes that can achieve the forward-privacy in a more practical and efficient manner. We propose a new DSSE scheme that we refer to as Forward-private Sublinear DSSE (FS-DSSE). FS-DSSE harnesses special secure update strategies and a novel caching strategy to reduce the computation cost of repeated queries. Therefore, it achieves forward-privacy, sublinear search complexity, low end-to-end delay, and parallelization capability simultaneously. We fully implemented our proposed method and evaluated its performance on a real cloud platform. Our experimental evaluation results showed that the proposed scheme is highly secure and highly efficient compared with state-of-the-art DSSE techniques. Specifically, FS-DSSE is up to three magnitude of times faster than forward-secure DSSE counterparts,more »depending on the frequency of the searched keyword in the database.« less