skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy-efficient localised rollback via data flow analysis and frequency scaling
Exascale systems will suffer failures hourly. HPC programmers rely mostly on application-level checkpoint and a global rollback to recover. In recent years, techniques reducing the number of rolling back processes have been implemented via message logging. However, the log-based approaches have weaknesses, such as being dependent on complex modifications within an MPI implementation, and the fact that a full restart may be required in the general case. To address the limitations of all log-based mechanisms, we return to checkpoint-only mechanisms, but advocate data flow rollback (DFR), a fundamentally different approach relying on analysis of the data flow of iterative codes, and the well-known concept of data flow graphs. We demonstrate the benefits of DFR for an MPI stencil code by localising rollback, and then reduce energy consumption by 10-12% on idling nodes via frequency scaling. We also provide large-scale estimates for the energy savings of DFR compared to global rollback, which for stencil codes increase as n2 for a process count n.  more » « less
Award ID(s):
1838271 1939076
PAR ID:
10192062
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
EuroMPI'18: Proceedings of the 25th European MPI Users' Group Meeting
Volume:
25
Issue:
11
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transparently checkpointing MPI for fault tolerance and load balancing is a long-standing problem in HPC. The problem has been complicated by the need to provide checkpoint-restart services for all combinations of an MPI implementation over all network interconnects. This work presents MANA (MPI-Agnostic Network-Agnostic transparent checkpointing), a single code base which supports all MPI implementation and interconnect combinations. The agnostic properties imply that one can checkpoint an MPI application under one MPI implementation and perhaps over TCP, and then restart under a second MPI implementation over InfiniBand on a cluster with a different number of CPU cores per node. This technique is based on a novel "split-process" approach, which enables two separate programs to co-exist within a single process with a single address space. This work overcomes the limitations of the two most widely adopted transparent checkpointing solutions, BLCR and DMTCP/InfiniBand, which require separate modifications to each MPI implementation and/or underlying network API. The runtime overhead is found to be insignificant both for checkpoint-restart within a single host, and when comparing a local MPI computation that was migrated to a remote cluster against an ordinary MPI computation running natively on that same remote cluster. 
    more » « less
  2. MANA-2.0 is a scalable, future-proof design for transparent checkpointing of MPI-based computations. Its network transparency (“network-agnostic”) feature ensures that MANA-2.0 will provide a viable, efficient mechanism for trans-parently checkpointing MPI applications on current and future supercomputers. MANA-2.0 is an enhancement of previous work, the original MANA, which interposes MPI calls, and is a work in progress intended for production deployment. MANA-2.0 implements a series of new algorithms and features that improve MANA's scalability and reliability, enabling transparent checkpoint-restart over thousands of MPI processes. MANA-2.0 is being tested on today's Cori supercomputer at NERSC using Cray MPICH library over the Cray GNI network, but it is designed to work over any standard MPI running over an arbitrary network. Two widely-used HPC applications were selected to demonstrate the enhanced features of MANA-2.0: GROMACS, a molecular dynamics simulation code with frequent point-to-point communication, and VASP, a materials science code with frequent MPI collective communication. Perhaps the most important lesson to be learned from MANA-2.0 is a series of algorithms and data structures for library-based transformations that enable MPI-based computations over MANA-2.0 to reliably survive the checkpoint-restart transition. 
    more » « less
  3. In this paper, we introduce a deep spiking delayed feedback reservoir (DFR) model to combine DFR with spiking neuros: DFRs are a new type of recurrent neural networks (RNNs) that are able to capture the temporal correlations in time series while spiking neurons are energy-efficient and biologically plausible neurons models. The introduced deep spiking DFR model is energy-efficient and has the capability of analyzing time series signals. The corresponding field programmable gate arrays (FPGA)-based hardware implementation of such deep spiking DFR model is introduced and the underlying energy-efficiency and recourse utilization are evaluated. Various spike encoding schemes are explored and the optimal spike encoding scheme to analyze the time series has been identified. To be specific, we evaluate the performance of the introduced model using the spectrum occupancy time series data in MIMO-OFDM based cognitive radio (CR) in dynamic spectrum sharing (DSS) networks. In a MIMO-OFDM DSS system, available spectrum is very scarce and efficient utilization of spectrum is very essential. To improve the spectrum efficiency, the first step is to identify the frequency bands that are not utilized by the existing users so that a secondary user (SU) can use them for transmission. Due to the channel correlation as well as users' activities, there is a significant temporal correlation in the spectrum occupancy behavior of the frequency bands in different time slots. The introduced deep spiking DFR model is used to capture the temporal correlation of the spectrum occupancy time series and predict the idle/busy subcarriers in future time slots for potential spectrum access. Evaluation results suggest that our introduced model achieves higher area under curve (AUC) in the receiver operating characteristic (ROC) curve compared with the traditional energy detection-based strategies and the learning-based support vector machines (SVMs). 
    more » « less
  4. Abstract Rapid and accurate assessment of conditions characterized by altered blood flow, cardiac blood pooling, or internal bleeding is crucial for diagnosing and treating various clinical conditions. While widely used imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound offer unique diagnostic advantages, they fall short for specific indications due to limited penetration depth and prolonged acquisition times. Magnetic particle imaging (MPI), an emerging tracer‐based technique, holds promise for blood circulation assessments, potentially overcoming existing limitations with reduction in background signals and high temporal and spatial resolution, below the millimeter scale. Successful imaging of blood pooling and impaired flow necessitates tracers with diverse circulation half‐lives optimized for MPI signal generation. Recent MPI tracers show potential in imaging cardiovascular complications, vascular perforations, ischemia, and stroke. The impressive temporal resolution and penetration depth also position MPI as an excellent modality for real‐time vessel perfusion imaging via functional MPI (fMPI). This review summarizes advancements in optimized MPI tracers for imaging blood circulation and analyzes the current state of pre‐clinical applications. This work discusses perspectives on standardization required to transition MPI from a research endeavor to clinical implementation and explore additional clinical indications that may benefit from the unique capabilities of MPI. 
    more » « less
  5. null (Ed.)
    The advent of Persistent Memory (PM) devices enables systems to actively persist information at low costs, including program state traditionally in volatile memory. However, this trend poses a reliability challenge in which multiple classes of soft faults that go away after restart in traditional systems turn into hard (recurring) faults in PM systems. In this paper, we first characterize this rising problem with an empirical study of 28 real-world bugs. We analyze how they cause hard faults in PM systems. We then propose Arthas, a tool to effectively recover PM systems from hard faults. Arthas checkpoints PM states via fine-grained versioning and uses program slicing of fault instructions to revert problematic PM states to good versions. We evaluate Arthas on 12 real-world hard faults from five large PM systems. Arthas successfully recovers the systems for all cases while discarding 10× less data on average compared to state-of-the-art checkpoint-rollback solutions. 
    more » « less