skip to main content

Title: Characterization of Staggered Twin Formation in HCP Magnesium
Twins in hexagonal close-packed polycrystals, most often nucleate at grain-boundaries (GBs), propagate into the grain and terminate at opposing GBs. Regularly, multiple parallel twins of the same variant form inside the same grain. When twins terminate inside the grains, rather than the grain boundary, they tend to form a staggered structure. Whether a staggered twin structure or the more common grain spanning twin structure forms can greatly affect mechanical behavior. In this work, the underlying mechanism for the formation of staggered twins is studied using an elasto-visco-plastic fast Fourier transform model, which quantifies the local stresses associated with 1012-type staggered twins in magnesium for different configurations. The model results suggest that when a twin tip is close to the lateral side of another twin, the driving force for twin propagation is significantly reduced. As a result, the staggered twin structure forms.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Magnesium technology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Application of polycrystalline hexagonal close packed (HCP) metals in engineering designs has been constrained by their anisotropic responses due to twinning and limited plasticity. In deformation, twins most often initiate at grain boundaries (GBs), and thicken and propagate across the grain. In this work, the GB twin embryos in Mg and Mg alloys, and the conditions that influence their propagation are investigated. Using a micromechanical crystal plasticity model, the role of embryo shape on the driving forces prevailing at the embryo boundaries that could support its expansion is studied. The modeled embryos are either planar, extending more in the shear direction than normal to the twin plane, or equiaxed. Results show that the thinner the embryo, the greater the driving forces for both thickening and forward propagation. Alloys with low prismatic-to-basal critical resolved shear stress (CRSS) ratios promote embryo thickening and large CRSS values for the slip mode that primarily accommodates the twin shear encourage propagation. The neighboring grains with orientations that enable local accommodation of the embryo twin shear by pyramidal slip promote forward propagation but have little effect on thickening. When two like embryos lie along the same GB, their paired interaction promotes forward propagation but hinders thickening. 
    more » « less
  2. Abstract Understanding and controlling the development of deformation twins is paramount for engineering strong and stable hexagonal close-packed (HCP) Mg alloys. Actual twins are often irregular in boundary morphology and twin crystallography, deviating from the classical picture commonly used in theory and simulation. In this work, the elastic strains and stresses around irregular twins are examined both experimentally and computationally to gain insight into how twins develop and the microstructural features that influence their development. A nanoprecession electron diffraction (N-PED) technique is used to measure the elastic strains within and around a $$\left\{ {10\overline{1}2} \right\}$$ 10 1 ¯ 2 tensile twin in AZ31B Mg alloy with nm scale resolution. A full-field elasto-viscoplastic fast Fourier transform (EVP-FFT) crystal plasticity model of the same sub-grain and irregular twin structure is employed to understand and interpret the measured elastic strain fields. The calculations predict spatially resolved elastic strain fields in good agreement with the measurement, as well as all the stress components and the dislocation density fields generated by the twin, which are not easily obtainable from the experiment. The model calculations find that neighboring twins, several twin thicknesses apart, have little influence on the twin-tip micromechanical fields. Furthermore, this work reveals that irregularity in the twin-tip shape has a negligible effect on the development of the elastic strains around and inside the twin. Importantly, the major contributor to these micromechanical fields is the alignment of the twinning shear direction with the twin boundary. 
    more » « less
  3. null (Ed.)
    The structure of type II twins in 10M Ni-Mn-Ga is modeled using the topological method. This method predicts the same twinning parameters as the kinematic model of Bevis and Crocker. Furthermore, topological modeling provides mechanistic insight into boundary migration rates, the twinning stresses and their temperature dependence. A type II twin is envisaged to form from a precursor, which is its type I conjugate. Disconnections on the precursor k_1 plane align into a tilt wall, which, after the relaxation of the rotational distortions, forms the type II boundary parallel on average to the k_2 plane. The component defects may align into a sharp wall or relax by kinking into a less orderly configuration. Both interfaces can host additional glissile disconnections whose motion along a boundary produces combined migration and shear. The ease of motion of these defects increases with their core width, and this, in turn, decreases with increasing sharpness of the boundary. Some experimental evidence in other materials suggests that type II twins can reduce their interfacial energy by adopting a configuration of low-index facets, which reduces twin boundary mobility. Topological modeling suggests that such a coherently faceted structure is unlikely in 10M Ni-Mn-Ga, in agreement with the high mobility of type II twin boundaries. 
    more » « less
  4. Type II and IV twins with irrational twin boundaries are studied by high-resolution transmission electron microscopy in two plagioclase crystals. The twin boundaries in these and in NiTi are found to relax to form rational facets separated by disconnections. The topological model (TM), amending the classical model, is required for a precise theoretical prediction of the orientation of the Type II/IV twin plane. Theoretical predictions also are presented for types I, III, V, and VI twins. The relaxation process that forms a faceted structure entails a separate prediction from the TM. Hence, faceting provides a difficult test for the TM. Analysis of the faceting by the TM is in excellent agreement with the observations.

    more » « less
  5. Deformation twinning is a prevalent plastic deformation mode in hexagonal close-packed (HCP) materials, such as magnesium, titanium, and zirconium, and their alloys. Experimental observations indicate that these twins occur heterogeneously across the polycrystalline microstructure during deformation. Morphological and crystallographic distribution of twins in a deformed microstructure, or the so-called twinning microstructure, significantly controls material deformation behavior, ductility, formability, and failure response. Understanding the development of the twinning microstructure at the grain scale can benefit design efforts to optimize microstructures of HCP materials for specific high-performance structural applications. This article reviews recent research efforts that aim to relate the polycrystalline microstructure with the development of its twinning microstructure through knowledge of local stress fields, specifically local stresses produced by twins and at twin/grain–boundary intersections on the formation and thickening of twins, twin transmission across grain boundaries, twin–twin junction formation, and secondary twinning. 
    more » « less