null
(Ed.)
Abstract A set $$U \subseteq {\mathbb {R}} \times {\mathbb {R}}$$ is universal for countable subsets of $${\mathbb {R}}$$ if and only if for all $$x \in {\mathbb {R}}$$ , the section $$U_x = \{y \in {\mathbb {R}} : U(x,y)\}$$ is countable and for all countable sets $$A \subseteq {\mathbb {R}}$$ , there is an $$x \in {\mathbb {R}}$$ so that $$U_x = A$$ . Define the equivalence relation $$E_U$$ on $${\mathbb {R}}$$ by $$x_0 \ E_U \ x_1$$ if and only if $$U_{x_0} = U_{x_1}$$ , which is the equivalence of codes for countable sets of reals according to U . The Friedman–Stanley jump, $=^+$ , of the equality relation takes the form $$E_{U^*}$$ where $U^*$ is the most natural Borel set that is universal for countable sets. The main result is that $=^+$ and $$E_U$$ for any U that is Borel and universal for countable sets are equivalent up to Borel bireducibility. For all U that are Borel and universal for countable sets, $$E_U$$ is Borel bireducible to $=^+$ . If one assumes a particular instance of $$\mathbf {\Sigma }_3^1$$ -generic absoluteness, then for all $$U \subseteq {\mathbb {R}} \times {\mathbb {R}}$$ that are $$\mathbf {\Sigma }_1^1$$ (continuous images of Borel sets) and universal for countable sets, there is a Borel reduction of $=^+$ into $$E_U$$ .
more »
« less
An official website of the United States government

