skip to main content


Title: Scalog: Seamless Reconfiguration and Total Order in a Scalable Shared Log
The shared log paradigm is at the heart of modern distributed applications in the growing cloud computing industry. Often, application logs must be stored durably for analytics, regulations, or failure recovery, and their smooth operation depends closely on how the log is implemented. Scalog is a new implementation of the shared log abstraction that offers an unprecedented combination of features for continuous smooth delivery of service: Scalog allows applications to customize data placement, supports reconfiguration with no loss in availability, and recovers quickly from failures. At the same time, Scalog provides high throughput and total order. The paper describes the design and implementation of Scalog and presents examples of applications running upon it. To evaluate Scalog at scale, we use a combination of real experiments and emulation. Using 4KB records, a 10 Gbps infrastructure, and SSDs, Scalog can totally order up to 52 million records per second.  more » « less
Award ID(s):
1762015
NSF-PAR ID:
10192152
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
17th USENIX Symposium on Networked Systems Design and Implementation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The FuzzyLog is a partially ordered shared log abstraction. Distributed applications can concurrently append to the partial order and play it back. FuzzyLog applications obtain the benefits of an underlying shared log --- extracting strong consistency, durability, and failure atomicity in simple ways --- without suffering from its drawbacks. By exposing a partial order, the FuzzyLog enables three key capabilities for applications: linear scaling for throughput and capacity (without sacrificing atomicity), weaker consistency guarantees, and tolerance to network partitions. We present Dapple, a distributed implementation of the FuzzyLog abstraction that stores the partial order compactly and supports efficient appends / playback via a new ordering protocol. We implement several data structures and applications over the FuzzyLog, including several map variants as well as a ZooKeeper implementation. Our evaluation shows that these applications are compact, fast, and flexible: they retain the simplicity (100s of lines of code) and strong semantics (durability and failure atomicity) of a shared log design while exploiting the partial order of the FuzzyLog for linear scalability, flexible consistency guarantees (e.g., causal+ consistency), and network partition tolerance. On a 6-node Dapple deployment, our FuzzyLogbased ZooKeeper supports 3M/sec single-key writes, and 150K/sec atomic cross-shard renames. 
    more » « less
  2. The FuzzyLog is a partially ordered shared log abstraction. Distributed applications can concurrently append to the partial order and play it back. FuzzyLog applications obtain the benefits of an underlying shared log - extracting strong consistency, durability, and failure atomicity in simple ways - without suffering from its drawbacks. By exposing a partial order, the FuzzyLog enables three key capabilities for applications: linear scaling for throughput and capacity (without sacrificing atomicity), weaker consistency guarantees, and tolerance to network partitions. We present Dapple, a distributed implementation of the FuzzyLog abstraction that stores the partial order compactly and supports efficient appends / playback via a new ordering protocol. We implement several data structures and applications over the FuzzyLog, including several map variants as well as a ZooKeeper implementation. Our evaluation shows that these applications are compact, fast, and flexible: they retain the simplicity (100s of lines of code) and strong semantics (durability and failure atomicity) of a shared log design while exploiting the partial order of the FuzzyLog for linear scalability, flexible consistency guarantees (e.g., causal+ consistency), and network partition tolerance. On a 6-node Dapple deployment, our FuzzyLog-based ZooKeeper supports 3M/sec single-key writes, and 150K/sec atomic cross-shard renames. 
    more » « less
  3. Boki is a new serverless runtime that exports a shared log API to serverless functions. Boki shared logs enable stateful serverless applications to manage their state with durability, consistency, and fault tolerance. Boki shared logs achieve high throughput and low latency. The key enabler is the metalog, a novel mechanism that allows Boki to address ordering, consistency and fault tolerance independently. The metalog orders shared log records with high throughput and it provides read consistency while allowing service providers to optimize the write and read path of the shared log in different ways. To demonstrate the value of shared logs for stateful serverless applications, we build Boki support libraries that implement fault-tolerant workflows, durable object storage, and message queues. Our evaluation shows that shared logs can speed up important serverless workloads by up to 4.7x. 
    more » « less
  4. Linearizability reduces the complexity of building correct applications. However, there is a tradeoff between using linearizability for geo-replicated storage and low tail latency. Traditional approaches use consensus to implement linearizable replicated state machines, but consensus is inefficient for workloads composed mostly of reads and writes. We present the design, implementation, and evaluation of Gryff, a system that offers linearizability and low tail latency by unifying consensus with shared registers. Gryff introduces carstamps to correctly order reads and writes without incurring unnecessary constraints that are required when ordering stronger synchronization primitives. Our evaluation shows that Gryff’s combination of an optimized shared register protocol with EPaxos allows it to provide lower service-level latency than EPaxos or MultiPaxos due to its lower tail latency for reads. 
    more » « less
  5. We propose the Write-Once Register (WOR) as an abstraction for building and verifying distributed systems. A WOR exposes a simple, data-centric API: clients can capture, write, and read it. Applications can use a sequence or a set of WORs to obtain properties such as durability, concurrency control, and failure atomicity. By hiding the logic for distributed coordination underneath a data-centric API, the WOR abstraction enables easy, incremental, and extensible implementation and verification of applications built above it. We present the design, implementation, and verification of a system called WormSpace that provides developers with an address space of WORs, implementing each WOR via a Paxos instance. We describe three applications built over WormSpace: a flexible, efficient Multi-Paxos implementation; a shared log implementation with lower append latency than the state-of-the-art; and a fault-tolerant transaction coordinator that uses an optimal number of round-trips. We show that these applications are simple, easy to verify, and match the performance of unverified monolithic implementations. We use a modular layered verification approach to link the proofs for WormSpace, its applications, and a verified operating system to produce the first verified distributed system stack from the application to the operating system. 
    more » « less