skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating LTE Coverage and Quality from an Unmanned Aircraft System
Despite widespread LTE adoption and dependence, rural areas lag behind in coverage availability and quality. In the United States, while the Federal Communications Commission (FCC), which regulates mobile broadband, reports increases in LTE availability, the most recent FCC Broadband Report was criticized for overstating coverage. Physical assessments of cellular coverage and quality are essential for evaluating actual user experience. However, measurement campaigns can be resource, time, and labor intensive; more scalable measurement strategies are urgently needed. In this work, we first present several measurement solutions to capture LTE signal strength measurements, and we compare their accuracy. Our findings reveal that simple, lightweight spectrum sensing devices have comparable accuracy to expensive solutions and can estimate quality within one gradation of accuracy when compared to user equipment. We then show that these devices can be mounted on Unmanned Aircraft Systems (UAS) to more rapidly and easily measure coverage across wider geographic regions. Our results show that the low-cost aerial measurement techniques have 72% accuracy relative to the ground readings of user equipment, and fall within one quality gradation 98% of the time.  more » « less
Award ID(s):
1831698
PAR ID:
10192169
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Mobile Ad hoc and Smart Systems (IEEE MASS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: With the proliferation of Dynamic Spectrum Access (DSA), Internet of Things (IoT), and Mobile Edge Computing (MEC) technologies, various methods have been proposed to deduce key network and user information in cellular systems, such as available cell bandwidths, as well as user locations and mobility. Not only is such information dominated by cellular networks of vital significance on other systems co-located spectrum-wise and/or geographically, but applications within cellular systems can also benefit remarkably from inferring such information, as exemplified by the endeavours made by video streaming to predict cell bandwidth. Hence, we are motivated to develop a new tool to uncover as much information used to be closed to outsiders or user devices as possible with off-the-shelf products. Given the wide-spread deployment of LTE and its continuous evolution to 5G, we design and implement U-CIMAN, a client-side system to accurately UnCover as much Information in Mobile Access Networks as allowed by LTE encryption. Among the many potential applications of U-CIMAN, we highlight one use case of accurately measuring the spectrum tenancy of a commercial LTE cell. Besides measuring spectrum tenancy in unit of resource blocks, U-CIMAN discovers user mobility and traffic types associated with spectrum usage through decoded control messages and user data bytes. We conduct 4-month detailed accurate spectrum measurement on a commercial LTE cell, and the observations include the predictive power of Modulation and Coding Scheme on spectrum tenancy, and channel off-time bounded under 10 seconds, to name a few. 
    more » « less
  2. Augmented Reality (AR) has been widely hailed as a representative of ultra-high bandwidth and ultra-low latency apps that will be enabled by 5G networks. While single-user AR can perform AR tasks locally on the mobile device, multi-user AR apps, which allow multiple users to interact within the same physical space, critically rely on the cellular network to support user interactions. However, a recent study showed that multi-user AR apps can experience very high end-to-end latency when running over LTE, rendering user interaction practically infeasible. In this paper, we study whether 5G mmWave, which promises significant bandwidth and latency improvements over LTE, can support multi-user AR by conducting an in-depth measurement study of the same popular multi-user AR app over both LTE and 5G mmWave. Our measurement and analysis show that: (1) The E2E AR latency over LTE is significantly lower compared to the values reported in the previous study. However, it still remains too high for practical user interaction. (2) 5G mmWave brings no benefits to multi-user AR apps. (3) While 5G mmWave reduces the latency of the uplink visual data transmission, there are other components of the AR app that are independent of the network technology and account for a significant fraction of the E2E latency. (4) The app drains 66% more network energy, which translates to 28% higher total energy over 5G mmWave compared to over LTE. 
    more » « less
  3. Cloud computing providers today offer access to a variety of devices, which users can rent and access remotely in a shared setting. Among these devices are SmartSSDs, which are solid-state disks (SSD) augmented with an FPGA, enabling users to instantiate custom circuits within the FPGA, including potentially malicious circuits for power and temperature measurement. Normally, cloud users have no remote access to power and temperature data, but with SmartSSDs they could abuse the FPGA component to instantiate circuits to learn this information. Additionally, custom power waster circuits can be instantiated within the FPGA. This paper shows for the first time that by leveraging ring oscillator sensors and power wasters, numerous covert-channels in FPGA-enabled SmartSSDs could be used to transmit information. This work presents two channels in single-tenant setting (SmartSSD is used by one user at a time) and two channels in multi-tenant setting (FPGA and SSD inside SmartSSD is shared by different users). The presented covert channels can reach close to 100% accuracy. Meanwhile, bandwidth of the channels can be easily scaled by cloud users renting more SmartSSDs as the bandwidth of the covert channels is proportional to number of SmartSSD used. 
    more » « less
  4. IEEE/IFIP (Ed.)
    We investigate the feasibility of targeted privacy attacks using only information available in physical channels of LTE mobile networks and propose three privacy attacks to demonstrate this feasibility: mobile-app fingerprinting attack, history attack, and correlation attack. These attacks can reveal the geolocation of targeted mobile devices, the victim's app usage patterns, and even the relationship between two users within the same LTE network cell. An attacker also may launch these attacks stealthily by capturing radio signals transmitted over the air, using only a passive sniffer as equipment. To ensure the impact of these attacks on mobile users' privacy, we perform evaluations in both laboratory and real-world settings, demonstrating their practicality and dependability. Furthermore, we argue that these attacks can target not only 4G/LTE but also the evolving 5G standards. 
    more » « less
  5. Interference management in current TV white space and Citizens Broadband Radio Service networks is mainly based on geographical separation of primary and secondary users. This approach overprotects primary users at the cost of available spectrum for secondary users. Potential solutions include acquiring more primary user information, such as a measurement-enhanced geographical database, and cooperative primary user, such as the TV set feedback in the next generation TV systems. However, one challenge of these solutions is to effectively manage the aggregate interference at TV receivers from interweaving secondary users. In this paper, a stochastic geometry-based aggregate interference model is developed for unlicensed spectrum shared by heterogeneous secondary users that have various transmit powers and multi-antenna capabilities. Moreover, an efficient computation approach is presented to capture network dynamics in real-time via a down-sampling that preserves high-quantile precision of the model. The stochastic geometry-based model is verified experimentally in ISM band. It is shown that the model enables separate control of admission and transmit power of multiple co-located secondary networks to protect primary users and maximize spectrum utilization. 
    more » « less