The highly anticipated 5G mmWave technology promises to enable
many uplink-oriented, latency-critical applications (LCAs) such as
Augmented Reality and Connected Autonomous Vehicles. Nonetheless,
recent measurement studies have largely focused on its downlink
performance. In thiswork,we perform a systematic study of the
uplink performance of commercial 5G mmWave networks across
3 major US cities and 2 mobile operators. Our study makes three
contributions. (1) It reveals that 5G mmWave uplink performance
is geographically diverse, substantially higher over LTE in terms of
bandwidth and latency, but often erratic and suboptimal, which can
degrade LCA performance. (2) Our analysis of control messages
and PHY-level KPIs shows that the root causes for the suboptimal
performance are fundamental to 5G mmWave and cannot be easily
fixed via simple tuning of network configurations. (3) We identify
various design and deployment optimizations that 5G operators
can explore to bring 5G mmWave performance to the level needed
to ultimately support the LCAs.
more »
« less
Can 5G mmWave Support Multi-user AR?
Augmented Reality (AR) has been widely hailed as a representative of ultra-high bandwidth and ultra-low latency apps that will be enabled by 5G networks. While single-user AR can perform AR tasks locally on the mobile device, multi-user AR apps, which allow multiple users to interact within the same physical space, critically rely on the cellular network to support user interactions. However, a recent study showed that multi-user AR apps can experience very high end-to-end latency when running over LTE, rendering user interaction practically infeasible. In this paper, we study whether 5G mmWave, which promises significant bandwidth and latency improvements over LTE, can support multi-user AR by conducting an in-depth measurement study of the same popular multi-user AR app over both LTE and 5G mmWave.
Our measurement and analysis show that: (1) The E2E AR latency over LTE is significantly lower compared to the values reported in the previous study. However, it still remains too high for practical user interaction. (2) 5G mmWave brings no benefits to multi-user AR apps. (3) While 5G mmWave reduces the latency of the uplink visual data transmission, there are other components of the AR app that are independent of the network technology and account for a significant fraction of the E2E latency. (4) The app drains 66% more network energy, which translates to 28% higher total energy over 5G mmWave compared to over LTE.
more »
« less
- Award ID(s):
- 2112778
- NSF-PAR ID:
- 10342973
- Date Published:
- Journal Name:
- In: Hohlfeld, O., Moura, G., Pelsser, C. (eds) Passive and Active Measurement. PAM 2022. Lecture Notes in Computer Science, vol 13210
- Page Range / eLocation ID:
- 180-196
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
5G aims to offer not only significantly higher throughput than previous generations of cellular networks, but also promises millisecond (ms) and sub-millisecond (ultra-)low latency support at the 5G physical (PHY) layer for future applications. While prior measurement studies have confirmed that commercial 5G deployments can achieve up to several Gigabits per second (Gbps) throughput (especially with the mmWave 5G radio), are they able to deliver on the (sub) millisecond latency promise? With this question in mind, we conducted to our knowledge the first in-depth measurement study of commercial 5G mmWave PHY latency using detailed physical channel events and messages. Through carefully designed experiments and data analytics, we dissect various factors that influence 5G PHY latency of both downlink and uplink data transmissions, and explore their impacts on end-to-end delay. We find that while in the best cases, the 5G (mmWave) PHY-layer is capable of delivering ms/sub-ms latency (with a minimum of 0.09 ms for downlink and 0.76 ms for uplink), these happen rarely. A variety of factors such as channel conditions, re-transmissions, physical layer control and scheduling mechanisms, mobility, and application (edge) server placement can all contribute to increased 5G PHY latency (and thus end-to-end (E2E) delay). Our study provides insights to 5G vendors, carriers as well as application developers/content providers on how to better optimize or mitigate these factors for improved 5G latency performance.more » « less
-
Next-generation mobile networks (5G and beyond) are expected to provide higher data rates and ultra-low latency in support of demanding applications, such as virtual and augmented reality, robots and drones, etc. To meet these stringent requirements, edge computing constitutes a central piece of the solution architecture wherein functional components of an application can be deployed over the edge network so as to reduce bandwidth demand over the core network while providing ultra-low latency communication to users. In this paper, we investigate the joint optimal placement of virtual service chains consisting of virtual application functions (components) and the steering of traffic through them, over a 5G multi-technology edge network model consisting of both Ethernet and mmWave links. This problem is NP-hard. We provide a comprehensive “microscopic" binary integer program to model the system, along with a heuristic that is one order of magnitude faster than solving the corresponding binary integer program. Extensive evaluations demonstrate the benefits of managing virtual service chains (by distributing them over the edge network) compared to a baseline “middlebox" approach in terms of overall admissible virtual capacity. We observe significant gains when deploying mmWave links that complement the Ethernet physical infrastructure. Moreover, most of the gains are attributed to only 30% of these mmWave links.more » « less
-
Edge-assisted Augmented Reality (AR) which offloads computeintensive Deep Neural Network (DNN)-based AR tasks to edge servers faces an important design challenge: how to pick the DNN model out of many choices proposed for each AR task for offloading. For each AR task, e.g., depth estimation, many DNN-based models have been proposed over time that vary in accuracy and complexity. In general, more accurate models are also more complex; they are larger and have longer inference time. Thus choosing a larger model in offloading can provide higher accuracy for the offloaded frames but also incur longer turnaround time, during which the AR app has to reuse the estimation result from the last offloaded frame, which can lead to lower average accuracy. In this paper, we experimentally study this design tradeoff using depth estimation as a case study. We design optimal offloading schedule and further consider the impact of numerous factors such as on-device fast tracking, frame downsizing and available network bandwidth. Our results show that for edge-assisted monocular depth estimation, with proper frame downsizing and fast tracking, compared to small models, the improved accuracy of large models can offset its longer turnaround time to provide higher average estimation accuracy across frames under both LTE and 5G mmWave.more » « less
-
The highly directional nature of the millimeter wave (mmWave) beams pose several challenges in using that spectrum for meeting the communication needs of immersive applications. In particular, the mmWave beams are susceptible to misalignments and blockages caused by user movements. As a result, mmWave channels are vulnerable to large fluctuations in quality, which in turn, cause disproportionate degradation in end-to-end performance of Transmission Control Protocol (TCP) based applications. In this paper, we propose a reinforcement learning (RL) integrated transport-layer plugin, Millimeter wave based Immersive Agent (MIA), for immersive content delivery over the mmWave link. MIA uses the RL model to predict mmWave link bandwidth based on the real-time measurement. Then, MIA cooperates with TCP’s congestion control scheme to adapt the sending rate in accordance with the predictions of the mmWave bandwidth. To evaluate the effectiveness of the proposed MIA, we conduct experiments using a mmWave augmented immersive testbed and network simulations. The evaluation results show that MIA improves end-to-end immersive performance significantly on both throughput and latency.more » « less