Understanding multi-component transport through polymer membranes is critical for separation applications such as water purification, energy devices, etc. Specifically for CO2 reduction cells, where the CO2 reduction products (alcohols and carboxylate salts), crossover of these species is undesirable and improving the design of ion exchange membranes to prevent this behavior is needed. Previously, it was observed that acetate transport increased in copermeation with alcohols for cation exchange membranes consisting of poly(ethylene glycol) diacrylate (PEGDA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and that the inclusion of poly(ethylene glycol) methacrylate (PEGMA) (n = 5, n represents the number of ethylene oxide repeat units) could suppress this behavior. Here, we further investigate the role of PEGMA in modulating fractional free volume and transport behavior of alcohols and carboxylates. PEGDA-PEGMA membranes of varied membranes are fabricated with both varied pre −polymerization water content at constant PEGMA (n = 9) content and varied PEGMA content at two pre −polymerization water contents (20 and 60 wt.% water). Permeability to sodium acetate also decreases in these charge-neutral PEGDA-PEGMA membranes compared to PEGMA-free films. Therefore, incorporation of comonomers such as PEGMA with long side chains may provide a useful membrane chemistry structural motif for preventing undesirable carboxylate crossover in polymer membranes.
more »
« less
Resilient hollow fiber nanofiltration membranes fabricated from crosslinkable phase-separated copolymers
As wastewater reclamation and reuse technologies become more critical to meeting the growing demand for water, a need has emerged for separation platforms that can be tailored to accommodate the highly varied feed water compositions and treatment demands of these technologies. Nanofiltration (NF) membranes based on copolymer materials are a promising platform in this regard because they can be engineered at the molecular scale to address an array of separation process needs. Here, for example, a resilient NF membrane is developed through the design of a poly(trifluoroethyl methacrylate- co -oligo(ethylene glycol) methyl ether methacrylate- co -glycidyl methacrylate) [P(TFEMA-OEGMA-GMA)] copolymer that can be dip-coated onto hollow fiber supports. By exploiting the microphase separation of the oligomeric ethylene glycol side chains from the copolymer backbone and by elucidating the processing–structure–property relationships for the dip-coating process, membranes with pores 2 nm-in-diameter that exhibit a hydraulic permeability of 15.6 L m −2 h −1 bar −1 were generated. The GMA repeat units were functionalized post-coating with hexamethylene diamine to incorporate positively-charged moieties along the pore walls. This functionality resulted in membranes that rejected 98% of the MgCl 2 from a 1 mM feed solution. Moreover, the reaction with the diamine crosslinked the copolymer such that the membranes operated stably in ethanol, an organic solvent that damaged the unreacted parent membranes irreparably. Finally, the stability of the crosslinked P(TFEMA-OEGMA-GMA) copolymer resulted in membranes that could operate continuously for a 24 hour period in aqueous solutions containing 500 ppm chlorine without exhibiting signs of structural degradation as evidenced by consistent rejection of neutral probe solutes. These results demonstrate how resilient, charge-selective NF membranes can be fabricated from microphase separated copolymers by engineering each of the constituent repeat units for a directed purpose.
more »
« less
- Award ID(s):
- 1932206
- PAR ID:
- 10192183
- Date Published:
- Journal Name:
- Molecular Systems Design & Engineering
- Volume:
- 5
- Issue:
- 5
- ISSN:
- 2058-9689
- Page Range / eLocation ID:
- 943 to 953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Separating lanthanides from actinides is a common task in rare earth element mining and processing, medical isotope purification, nuclear forensics, and radioanalytical chemistry. Membrane adsorbers are emerging as a promising platform to perform such adsorptive separations. In this work, functional membrane adsorbers are synthesized by coating poly(ether sulfone) microfiltration membranes with polymeric ligands that contain ethylene glycol methacrylate phosphate (EGMP) as the ion-coordinating moiety. The composition of the polymeric ligands is controlled by copolymerizing EGMP with butyl methacrylate (BuMA) and 2-hydroxy ethyl methacrylate (HEMA). Equilibrium and time-resolved adsorption data were modeled to understand the thermodynamics and kinetics of complexation of UO22+ at pH 1 and pH 4. The data are compared to previously reported data for La3+ and the feasibility of on-column separation of UO22+ over La3+ is assessed by transport modeling in MATLAB. All synthesized membranes are selective for UO22+ over La3+. At pH 1, the separation is improved with the presence of a nonbinding comonomer. At pH 4, the separation is worsened by the presence of a nonbinding comonomer.more » « less
-
Abstract Development of a universal and stable surface coating, irrespective of surface chemistry or material characteristics, is highly desirable but has proved to be extremely challenging. Conventional coating strategies including the commonly used catechol surface coating are limited to either a certain type of substrates or weak and unreliable surface bonding. Here, a simple, robust, and universal surface coating method capable for attaching any stimuli‐responsive glycidyl methacrylate (GMA)‐based copolymer, consisting of one surface‐adhesive moiety of epoxy groups and one stimuli‐responsive moiety, to any type of hydrophobic and hydrophilic surfaces via a one‐step ring‐opening reaction is proposed and demonstrated. The resultant GMA‐based copolymers are not only strongly adhered on different substrates (e.g., silicon, polypropylene, polyvinyl chloride, indium tin oxide, polyethylene terephthalate, aluminum, glass, polydimethylsiloxane, and even polyvinylidene fluoride with low surface energy), but also are possessed distinct thermal‐, pH‐, and salt‐responsive functions of bacterial killing, bacterial releasing, tunable multicolor fluorescence emission, and heavy metal detection. This coating method is also compatible with the directional quaternization of GMA‐based copolymers for further improving surface adhesion and functionality. This study provides a simple yet universal coating method to solve the long‐standing challenge of robust integration of stimuli‐responsive polymers with strong adhesion between various polymers and substrates.more » « less
-
Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are now widely found in aquatic ecosystems, including sources of drinking water and portable water, due to their increasing prevalence. Among different PFAS treatment or separation technologies, nanofiltration (NF) and reverse osmosis (RO) both yield high rejection efficiencies (>95%) of diverse PFAS in water; however, both technologies are affected by many intrinsic and extrinsic factors. This study evaluated the rejection of PFAS of different carbon chain length (e.g., PFOA and PFBA) by two commercial RO and NF membranes under different operational conditions (e.g., applied pressure and initial PFAS concentration) and feed solution matrixes, such as pH (4–10), salinity (0‐ to 1000‐mM NaCl), and organic matters (0–10 mM). We further performed principal component analysis (PCA) to demonstrate the interrelationships of molecular weight (213–499 g·mol−1), membrane characteristics (RO or NF), feed water matrices, and operational conditions on PFAS rejection. Our results confirmed that size exclusion is a primary mechanism of PFAS rejection by RO and NF, as well as the fact that electrostatic interactions are important when PFAS molecules have sizes less than the NF membrane pores. Practitioner PointsTwo commercial RO and NF membranes were both evaluated to remove 10 different PFAS.High transmembrane pressures facilitated permeate recovery and PFAS rejection by RO.Electrostatic repulsion and pore size exclusion are dominant rejection mechanisms for PFAS removal.pH, ionic strength, and organic matters affected PFAS rejection.Mechanisms of PFAS rejection with RO/NF membranes were explained by PCA analysis.more » « less
-
Membrane-based separations offer the potential for the lowest energy demand requirements of all separation options. Among all nanoporous membranes, the carbon molecular sieves (CMS), metal-organic frameworks (MOFs), and mixed-matrix membranes (MMMs) with angstrom level molecular discrimination properties makes them appealing for separating a wide spectrum of gas-pairs. Here we present results of gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the iridization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C2H6, C2H4, C3H8, C3H6 adsorption capacities reached to 42.61, 2.56, 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO2, CH4, CO, N2 and H2 adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane were formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H2/CO2, CH4/CO2 and C3H6/C3H8 feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes.more » « less
An official website of the United States government

